双层简单神经网络demo

本文通过示例展示了双层神经网络相比于单层神经网络在性能上的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#Mnist数据集 属性已经写好 可以直接调用
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
 
#one_hot=True 表示对label进行one-hot编码,比如标签4可表示为[0,0,0,0,1,0,0,0,0,0,0]
mnist = input_data.read_data_sets('data/',one_hot=True)
numClass = 10
inputSize = 784
numHiddenUnits = 50  			#隐藏层50个单元
trainingIterations = 10000
batchSize = 100			#每次训练在训练集中取batchsize个样本训练
			
#加了一个隐层
numHiddenUnitsLayer2 = 100
trainingIterations = 10000

X = tf.placeholder(tf.float32,shape = [None,inputSize])
y = tf.placeholder(tf.float32,shape = [None,numClass])

#参数初始化
W1 = tf.Variable(tf.truncated_normal([inputSize,numHiddenUnits],stddev=0.1))
B1 = tf.Variable(tf.constant(0.1),[numHiddenUnits])
W2 = tf.Variable(tf.truncated_normal([numHiddenUnits,numHiddenUnitsLayer2],stddev=0.1))
B2 = tf.Variable(tf.constant(0.1),[numHiddenUnitsLayer2])
W3 = tf.Variable(tf.truncated_normal([numHiddenUnitsLayer2,numClass],stddev=0.1))
B3 = tf.Variable(tf.constant(0.1),[numHidde
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值