#Mnist数据集 属性已经写好 可以直接调用
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
#one_hot=True 表示对label进行one-hot编码,比如标签4可表示为[0,0,0,0,1,0,0,0,0,0,0]
mnist = input_data.read_data_sets('data/',one_hot=True)
numClass = 10
inputSize = 784
numHiddenUnits = 50 #隐藏层50个单元
trainingIterations = 10000
batchSize = 100 #每次训练在训练集中取batchsize个样本训练
#加了一个隐层
numHiddenUnitsLayer2 = 100
trainingIterations = 10000
X = tf.placeholder(tf.float32,shape = [None,inputSize])
y = tf.placeholder(tf.float32,shape = [None,numClass])
#参数初始化
W1 = tf.Variable(tf.truncated_normal([inputSize,numHiddenUnits],stddev=0.1))
B1 = tf.Variable(tf.constant(0.1),[numHiddenUnits])
W2 = tf.Variable(tf.truncated_normal([numHiddenUnits,numHiddenUnitsLayer2],stddev=0.1))
B2 = tf.Variable(tf.constant(0.1),[numHiddenUnitsLayer2])
W3 = tf.Variable(tf.truncated_normal([numHiddenUnitsLayer2,numClass],stddev=0.1))
B3 = tf.Variable(tf.constant(0.1),[numHidde