使用神经网络对黄金期货交割价格进行预测-4 MATLAB

本文探讨了如何使用粒子群算法(PSO)优化神经网络的学习过程,以预测黄金期货交割价格。通过将权值和阈值排列成行向量并用PSO算法进行递归优化,实现快速收敛。然而,由于PSO的全局搜索特性,拟合精度不高。提出了结合传统BP算法进行精细化搜索以提升预测性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

   上一篇文章讲述了如何对预测的结果进行合理化修正,本文主要讲述的是对神经网络本身的学习算法进行优化。

   一般优化神经网络有三种模式,一种为优化神经网络的连接结构,一种为优化神经网络的学习算法,一种为既优化连接结构,又优化学习算法。由于笔者的知识水平有限,所以采用第二种方法——优化神经网络的学习算法作为本实例的优化模型。

   神经网络的学习算法有很多种,包括传统的爬山法亦或是拟牛顿法,而目前智能优化算法的兴起使得其对神经网络的学习算法进行替换有了可能。智能优化算法有很多种,每一种都有着其特性,可以根据实际问题来决定使用哪种算法。本实例中主要采用的是粒子群算法(PSO)作为神经网络的学习算法。粒子群算法为群智能算法的一种,为目前比较新兴的智能优化算法,所以相关的文献较少,但是其收敛速度快,不易收敛于局部极值点和并行搜索的特性使得其目前成为了较为热门的研究方向。本文采用标准粒子群算法(带惯性权重)作为神经网络的学习算法,算法本身在这里不再介绍,这里主要讲述粒子群算法如何作为神经网络的学习算法。

   粒子群算法与其他的智能算法一样,都需要一定数量的种群。对于粒子群算法来说,粒子种群数量的大小对算法本身的性能来说影响有限,所以可以根据个人使用的机器性能不同,据实际情况来规定种群规模。

   神经网络的学习过程可以归纳为,修正神经网络的权值以及阈值,使神经网络的输出误差逐渐减小的过程。对于前向神经网络来说,其输出与网络中的每一个权值和阈值有关。也就是说,其输出是以所有权值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值