HAN - Heterogeneous Graph Attention Network 异构图注意力网络 WWW2019

本文介绍了Heterogeneous Graph Attention Network(HAN),一种结合了节点级和语义级注意力的异构图神经网络。HAN通过元路径学习节点及其邻居的重要性,并对不同元路径赋予不同权重,适用于复杂异构信息网络的分析。实验结果显示,HAN在节点分类和聚类任务上表现出优越性能,同时具备良好的解释性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文题目:Heterogeneous Graph Attention Network (HAN)异构图注意力网络

作者:北京邮电大学Xiao Wang,Houye Ji等人

来源:WWW2019

论文链接:https://arxiv.org/pdf/1903.07293.pdf

tensorflow版代码Github链接:https://github.com/Jhy1993/HAN

介绍视频:https://www.bilibili.com/video/av53418944/

摘要

最近,深度学习中最令人兴奋的进步之一是注意机制,它的巨大潜力在各个领域。

本文首先提出了一种基于层次注意力的异构图神经网络,包括节点级注意力和语义级注意力。具体地说:

  • 节点级注意力旨在学习节点与其基于元路径的邻居之间的重要性
  • 语义级注意力能够学习不同元路径的重要性

通过从节点级和语义级两个层次上学习重要性,可以充分考虑节点和元路径的重要性。该模型通过对基于元路径的邻域特征进行分层聚合,生成节点嵌入。在三个真实世界的异质图上的大量实验结果不仅显示了我们所提出的模型比现有的模型更优越的性能,而且也显示了它潜在的良好的图分析的可解释性。

1、相关介绍

背景

现实世界中的数据通常与图表结构(如社交网络、引文网络和万维网)结合在一起。图形神经网络(GNN)作为一种强大的图形数据深度表示学习方法,在网络分析方面表现出了优异的性能,引起了广泛的研究兴趣。例如,[10,20,24]利用深度神经网络来学习基于节点特征和图结构的节点表示。一些文献[6,14,18]将卷积运算推广到图上,提出了图卷积网络。深度学习的一个最新研究趋势是注意机制,它处理可变大小的数据,并鼓励模型关注数据中最显著的部分。它在深层神经网络框架中的有效性得到了证明,并被广泛应用于文本分析[1]、知识图[25]和图像处理[38]等领域。图注意网络(GAT)[35]是一种新颖的卷积型图神经网络,它利用了只包含一类节点或链接的齐次图的注意机制。

尽管注意机制在深度学习中取得了成功,但在异构图的图神经网络框架中却没有得到考虑。事实上,现实世界中的图通常带有多种类型的节点和边,也被广泛称为异构信息网络(HIN)[28]。为了方便起见,本文统一称之为异构图。由于异构图包含的信息更加全面,语义更加丰富,因此在许多数据挖掘任务中得到了广泛的应用。元路径[32]是连接两个对象的复合关系,是一种广泛使用的语义捕获结构。根据元路径的不同,异构图中节点之间的关系可以有不同的语义。由于异构图形的复杂性,传统的图形神经网络不能直接应用于异构图形。基于以上分析,在设计具有注意机制的异构图神经网络体系结构时,需要解决以下新的需求。

以 Graph Convolutional Network,Graph Attention Network 为代表的图神经网络已经引起了学术界与工业界的广泛关注。然而,目前的图神经网络主要针对同质图(节点类型和边类型单一)设计,但真实世界中的图大部分都可以很自然地建模为异质图(多种类型的节点和边)。如图 1 所示,IMDB 数据中包含三种类型的节点 Actor、Movie 和 Director,两种类型的边 Actor-Movie 和 Movie-Director。

640?wx_fmt=png

相对于同质图神经网络,异质图神经网络具有更强的现实意义可以更好的满足工业界需求。如阿里巴巴正在建设亿级节点十亿级边的异质图神经网络平台 AliGraph 来满足整个阿里集团各种商业化场景需求。因此亟需展开面向异质图的图神经网络模型研究,而异质图的异质性却又给设计图神经网络带来了巨大的挑战。

元路径 meta-path


在异构图中,两个节点可以通过不同的语义路径连接,称为元路径(meta-path),如图1中,Movie-Actor-Movie(MAM)和Movie-Year-Movie (MYM)都是不同的meta-path。不同的meta-path有不同的语义。如图1中, meta-path Movie-Actor-Movie (MAM)表示电影的演员相同, meta-path Movie-Director-Movie (MDM) 表示电影的

03-12
<think>好的,用户的问题是关于“HAN”的,需要先理解用户的具体意图。HAN可能指代多个概念,比如自然语言处理中的层次注意力网络(Hierarchical Attention Network)、韩国的高性能网络(High-Access Network),或者其他的缩写。首先,我需要确认最常见的含义,并检查是否有其他可能的解释。 层次注意力网络(Hierarchical Attention Network)是由Zichao Yang等人在2016年提出的,主要用于文档分类。该模型结合了层次结构和注意力机制,能有效捕捉文档的层级信息和重要部分。这可能是用户所指的HAN,尤其是在自然语言处理领域。因此,我会先搜索相关信息,确认其结构、应用和实现方法。 另外,HAN也可能指韩国的高性能网络,这属于通信技术领域。需要检查是否有相关的技术标准或应用案例。不过根据常见的技术问题,层次注意力网络更可能是用户的问题核心,尤其是当用户没有提供更多上下文时。 接下来,调用网络搜索工具,查找与HAN相关的最新资料、论文、教程或技术文档。确认层次注意力网络的最新进展,是否有新的变体或应用场景。同时,检查是否有其他可能的解释,确保回答的全面性。 整合信息时,需要按照用户的要求,分点说明HAN的不同含义,重点放在层次注意力网络上,详细描述其结构、应用和代码示例。同时,如果存在其他解释,也需要简要提及,避免遗漏。 在格式方面,确保使用Markdown的代码块和数学公式格式。例如,在描述层次注意力网络时,涉及到的公式需要用$$包裹,代码示例需要注明语言类型并用三个反引号包裹。同时,避免使用第一人称和步骤词汇,保持回答的客观性。 最后,生成相关问题部分,必须基于回答内容,提出三个相关的问题。例如,层次注意力网络的具体应用案例、与其他模型的比较,或者韩国高性能网络的详细信息等。确保问题符合用户可能的后续需求,并严格遵循格式要求。 总结步骤:确认HAN的可能含义,搜索相关信息,分点整理回答,确保格式正确,生成相关问题。整个过程需高效准确,满足用户需求。</think>**层次注意力网络(Hierarchical Attention Network, HAN)** HAN是一种用于文档分类的深度学习模型,通过分层注意力机制捕捉文档的句子级和词级特征。其核心结构包括: 1. **词编码器**:将词序列转换为向量表示。 2. **词级注意力**:为每个词分配权重,提取关键信息。 3. **句子编码器**:聚合词向量生成句子表示。 4. **句子级注意力**:为句子分配权重,突出重要句子。 数学公式示例: 词级注意力权重计算: $$ \alpha_{it} = \frac{\exp(u_{it}^\top u_w)}{\sum_t \exp(u_{it}^\top u_w)} $$ 其中 $u_{it}$ 为词隐藏状态,$u_w$ 为可学习参数。 **HAN的应用场景**: - 文本分类(如新闻分类、情感分析) - 长文档理解(如医学报告分析) - 多模态任务(结合图像或结构化数据) **代码实现(PyTorch示例)**: ```python import torch import torch.nn as nn class HAN(nn.Module): def __init__(self, vocab_size, embedding_dim, hidden_size): super().__init__() self.embedding = nn.Embedding(vocab_size, embedding_dim) self.gru_word = nn.GRU(embedding_dim, hidden_size, bidirectional=True) self.attention_word = nn.Linear(2*hidden_size, 2*hidden_size) # 其余层定义省略 def forward(self, x): # 实现词和句子级编码与注意力 return output ``` **其他可能的HAN解释**: - **High-Access Network(韩国高性能网络)**:一种低延迟、高带宽的通信技术,用于5G/6G网络- **Human-Agent Network**:人机协作系统中的交互框架。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值