注:本文为 “性代数 | 行列式与矩阵” 相关合辑。
图片清晰度受引文原图所限。
略作重排,未整理去重。
如有内容异常,请看原文。
行列式和矩阵有何区别
务虚学派 发布于 2021-11-17 11:31
行列式与矩阵的区别主要体现在以下四个方面:
-
本质区别:矩阵是一个数表,而行列式是一个数值,定义在 n n n 阶方阵上。
-
符号区别:矩阵通常用括号 ( ) ( ) () 或方括号 [ ] [ ] [] 表示,行列式则用双竖线 ∣ ∣ | | ∣∣ 表示。
-
结构区别:矩阵的行数和列数可以不同,即可以是 m × n m \times n m×n 的形式;而行列式的行数与列数必须一致,即为 n × n n \times n n×n 的方阵。
-
运算区别:
- 一个数乘以行列式,只能乘以行列式的一行或一列;而一个数乘以矩阵时,矩阵的每个元素都要乘以这个数。
- 两个矩阵相等是指对应元素都相等;两个行列式相等则不要求对应元素都相等,甚至阶数也可以不同,只要其运算结果的代数和相等即可。行列式相等意味着其值相等,而行和列的数目不必相等,数据也不必相等。矩阵相等则要求行和列的数目必须相等,且对应位置的数据也必须相等。
- 行列式相加减是两个数值的相加减,结果仍为数值;矩阵相加减则是对应位置的数据相加减。
-
矩阵:是高等代数学中的常见工具,广泛应用于线性代数、线性方程组的求解、线性变换等领域。
矩阵也常见于统计分析、计算机科学、物理学等应用数学学科中。 -
行列式:可以看作是有向面积或体积的概念在一般的欧几里得空间中的推广。
它在判断矩阵的可逆性、计算多变量函数的雅可比行列式等方面具有重要作用。
发布于 2021-11-17 11:31
矩阵与方阵行列式之间的联系与区别
万物皆有源 发布于 2023-03-08 07:27・福建
一、行列式的定义
行列式的定义如下:
由上述定义可知,行列式是一个 n n n 行 n n n 列的数表,但该数表具有确定的运算规则,因此行列式实际上代表一个数字。
从上述两个图可以看出,行列式的结构代表一个数字。
二、矩阵的定义
矩阵的定义如下:
由上述定义可知,矩阵是由数字排列成的表格,其本身不包含任何运算规则。
从上述两个图可以看出,矩阵的加减和乘法定义之后,矩阵就可以进行运算了,但与行列式相比,矩阵的运算是在不同的矩阵之间进行的。
三、矩阵和行列式之间的联系
(一)通过伴随矩阵建立联系
从上图可以看出,矩阵和行列式之间的联系通过伴随矩阵得以建立。
以上是伴随矩阵和行列式之间的具体联系,当然,矩阵首先要是方阵才有行列式。
(二)通过可逆矩阵建立联系
除了伴随矩阵,矩阵和行列式还通过可逆矩阵进行联系:
以上是可逆矩阵和行列式的具体联系。
四、简单总结
- 行列式本身是一个数字,它代表符合某种运算规则的数字集合。
- 矩阵只是一个数字表格,本身不代表任何运算。
- 矩阵的加减和乘法运算是在不同的矩阵之间进行的。
- 只有当矩阵是方阵的时候才有行列式。矩阵和行列式之间的联系通过伴随矩阵和可逆矩阵建立。
行列式与矩阵的概念及运算
一、引言
在高等代数与线性代数的知识体系中,行列式(Determinant)与矩阵(Matrix)是两个基础概念。二者在形式上存在一定关联(如仅方阵对应行列式),但在本质定义、结构特征、运算规则及应用场景上存在根本差异。混淆二者易导致对线性代数逻辑的理解偏差,因此本章将从概念本质到实际应用,系统梳理行列式与矩阵的区别与关联,建立清晰的知识框架。
二、本质定义:“数值函数” 与 “矩形数表” 的差异
行列式与矩阵的根本区别在于数学本质不同,这直接决定了二者的属性与功能差异。
2.1 矩阵(Matrix)的本质
矩阵是由
m
m
m 行(row)和
n
n
n 列(column)元素构成的矩形数表,核心属性是 “数据的结构化载体”,不直接对应某个具体数值。
设矩阵
A
\boldsymbol {A}
A 的第
i
i
i 行第
j
j
j 列元素为
a
i
j
a_{ij}
aij(其中
i
=
1
,
2
,
…
,
m
i=1,2,\dots,m
i=1,2,…,m;
j
=
1
,
2
,
…
,
n
j=1,2,\dots,n
j=1,2,…,n),其一般形式记为:
A
=
(
a
11
a
12
⋯
a
1
n
a
21
a
22
⋯
a
2
n
⋮
⋮
⋱
⋮
a
m
1
a
m
2
⋯
a
m
n
)
\boldsymbol {A} = \begin {pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end {pmatrix}
A=
a11a21⋮am1a12a22⋮am2⋯⋯⋱⋯a1na2n⋮amn
可简化表示为
A
m
×
n
\boldsymbol {A}_{m \times n}
Am×n 或
(
a
i
j
)
m
×
n
(a_{ij})_{m \times n}
(aij)m×n,其中
m
m
m 和
n
n
n 分别表示行数与列数,二者可相等(此时为方阵)或不相等(如行矩阵、列矩阵)。
2.2 行列式(Determinant)的本质
行列式是定义在
n
n
n 阶方阵(行数 = 列数 =
n
n
n)上的数值函数,核心属性是 “通过特定规则提取的数值”,仅能对
n
n
n 阶方阵定义(非方阵无行列式)。
设
n
n
n 阶方阵
A
=
(
a
i
j
)
n
×
n
\boldsymbol {A} = (a_{ij})_{n \times n}
A=(aij)n×n,其行列式记为
det
(
A
)
\det (\boldsymbol {A})
det(A) 或
∣
A
∣
|\boldsymbol {A}|
∣A∣,计算规则通过 “按行 / 列展开” 定义:
对第
i
i
i 行展开,行列式的数值为:
det
(
A
)
=
∑
j
=
1
n
a
i
j
A
i
j
\det (\boldsymbol {A}) = \sum_{j=1}^n a_{ij} A_{ij}
det(A)=j=1∑naijAij
其中
A
i
j
=
(
−
1
)
i
+
j
M
i
j
A_{ij} = (-1)^{i+j} M_{ij}
Aij=(−1)i+jMij 称为元素
a
i
j
a_{ij}
aij 的代数余子式,
M
i
j
M_{ij}
Mij 称为余子式(即划去
A
\boldsymbol {A}
A 的第
i
i
i 行第
j
j
j 列后,剩余
n
−
1
n-1
n−1 阶方阵的行列式)。
例如,2 阶行列式的计算可直接由上述规则推导:
∣
a
11
a
12
a
21
a
22
∣
=
a
11
a
22
−
a
12
a
21
\begin {vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end {vmatrix} = a_{11} a_{22} - a_{12} a_{21}
a11a21a12a22
=a11a22−a12a21
三、结构特征与表示符号
行列式与矩阵的外观形式和结构约束存在严格区分,是二者最直观的差异。
3.1 表示符号的区别
- 矩阵:始终使用圆括号(
(
)
(\quad)
())或方括号(
[
]
[\quad]
[])包裹元素,例如:
2×3 矩阵 B = ( 1 2 3 4 5 6 ) \boldsymbol {B} = \begin {pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end {pmatrix} B=(142536),3×1 列矩阵 C = [ 7 8 9 ] \boldsymbol {C} = \begin {bmatrix} 7 \\ 8 \\ 9 \end {bmatrix} C= 789 。 - 行列式:始终使用双竖线(
∣
∣
|\quad|
∣∣)包裹元素,且仅能包裹
n
n
n 阶方阵的元素,例如:
2 阶行列式 ∣ 1 2 3 4 ∣ = − 2 \begin {vmatrix} 1 & 2 \\ 3 & 4 \end {vmatrix} = -2 1324 =−2,3 阶行列式 ∣ 1 0 0 0 2 0 0 0 3 ∣ = 6 \begin {vmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end {vmatrix} = 6 100020003 =6。
3.2 结构约束的区别
对比维度 | 矩阵(Matrix) | 行列式(Determinant) |
---|---|---|
行 / 列数关系 | 行数 m m m 与列数 n n n 可相等或不相等 | 行数 = 列数 = n n n(仅 n n n 阶方阵可定义) |
维度描述 | 用 “ m × n m \times n m×n” 描述(如 2×3 矩阵) | 用 “ n n n 阶” 描述(如 3 阶行列式) |
特殊类型 | 行矩阵(1×n)、列矩阵(m×1)、方阵(n×n) | 仅分 “ n n n 阶”,无其他结构类型 |
存在性约束 | 任意正整数 m , n m,n m,n 均存在 m × n m×n m×n 矩阵 | 非方阵( m ≠ n m≠n m=n)无行列式 |
四、运算规则的系统对比
行列式与矩阵的运算逻辑完全不同:行列式的运算本质是 “数值运算”,结果为单值;矩阵的运算本质是 “数表运算”,结果多为新矩阵(或向量、秩等)。以下从运算类型展开对比。
4.1 数乘运算(常数与行列式 / 矩阵的乘法)
-
矩阵的数乘:常数 k k k 作用于矩阵的所有元素,结果为新矩阵。
设 A = ( a i j ) m × n \boldsymbol {A} = (a_{ij})_{m \times n} A=(aij)m×n,则:
k A = ( k a 11 k a 12 ⋯ k a 1 n k a 21 k a 22 ⋯ k a 2 n ⋮ ⋮ ⋱ ⋮ k a m 1 k a m 2 ⋯ k a m n ) k\boldsymbol {A} = \begin {pmatrix} k a_{11} & k a_{12} & \cdots & k a_{1n} \\ k a_{21} & k a_{22} & \cdots & k a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ k a_{m1} & k a_{m2} & \cdots & k a_{mn} \end {pmatrix} kA= ka11ka21⋮kam1ka12ka22⋮kam2⋯⋯⋱⋯ka1nka2n⋮kamn
例: 2 × ( 1 2 3 4 ) = ( 2 4 6 8 ) 2 \times \begin {pmatrix} 1 & 2 \\ 3 & 4 \end {pmatrix} = \begin {pmatrix} 2 & 4 \\ 6 & 8 \end {pmatrix} 2×(1324)=(2648)。 -
行列式的数乘:常数 k k k 仅作用于行列式的某一行(或某一列),本质是常数与行列式数值的乘法。
设 det ( A ) \det (\boldsymbol {A}) det(A) 为 n n n 阶行列式,则:
k ⋅ det ( A ) = ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋱ ⋮ k a i 1 k a i 2 ⋯ k a i n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ k \cdot \det (\boldsymbol {A}) = \begin {vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ k a_{i1} & k a_{i2} & \cdots & k a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end {vmatrix} k⋅det(A)= a11⋮kai1⋮an1a12⋮kai2⋮an2⋯⋱⋯⋱⋯a1n⋮kain⋮ann
例: 2 × ∣ 1 2 3 4 ∣ = ∣ 2 4 3 4 ∣ = − 4 2 \times \begin {vmatrix} 1 & 2 \\ 3 & 4 \end {vmatrix} = \begin {vmatrix} 2 & 4 \\ 3 & 4 \end {vmatrix} = -4 2× 1324 = 2344 =−4(仅第 1 行乘 2)。
4.2 相等判定
- 矩阵相等:需同时满足两个条件:
- 行数、列数完全相同(即 “同型矩阵”);
- 所有对应位置的元素相等(
a
i
j
=
b
i
j
a_{ij} = b_{ij}
aij=bij 对所有
i
,
j
i,j
i,j 成立)。
记为 A = B \boldsymbol {A} = \boldsymbol {B} A=B,例如 ( 1 2 3 4 ) ≠ ( 1 2 3 5 ) \begin {pmatrix} 1 & 2 \\ 3 & 4 \end {pmatrix} \neq \begin {pmatrix} 1 & 2 \\ 3 & 5 \end {pmatrix} (1324)=(1325)(元素 a 22 ≠ b 22 a_{22} \neq b_{22} a22=b22)。
- 行列式相等:仅需满足 “运算结果的数值相等”,无需行数 / 列数或对应元素相等。
记为 det ( A ) = det ( B ) \det (\boldsymbol {A}) = \det (\boldsymbol {B}) det(A)=det(B),例如 ∣ 1 2 3 4 ∣ = − 2 \begin {vmatrix} 1 & 2 \\ 3 & 4 \end {vmatrix} = -2 1324 =−2, ∣ 1 0 0 − 2 ∣ = − 2 \begin {vmatrix} 1 & 0 \\ 0 & -2 \end {vmatrix} = -2 100−2 =−2,故二者相等。
4.3 加减运算
-
矩阵的加减:仅同型矩阵可加减,结果为对应元素相加减的新矩阵。
设 A = ( a i j ) m × n \boldsymbol {A} = (a_{ij})_{m \times n} A=(aij)m×n, B = ( b i j ) m × n \boldsymbol {B} = (b_{ij})_{m \times n} B=(bij)m×n,则:
A ± B = ( a 11 ± b 11 a 12 ± b 12 ⋯ a 1 n ± b 1 n a 21 ± b 21 a 22 ± b 22 ⋯ a 2 n ± b 2 n ⋮ ⋮ ⋱ ⋮ a m 1 ± b m 1 a m 2 ± b m 2 ⋯ a m n ± b m n ) \boldsymbol {A} \pm \boldsymbol {B} = \begin {pmatrix} a_{11} \pm b_{11} & a_{12} \pm b_{12} & \cdots & a_{1n} \pm b_{1n} \\ a_{21} \pm b_{21} & a_{22} \pm b_{22} & \cdots & a_{2n} \pm b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} \pm b_{m1} & a_{m2} \pm b_{m2} & \cdots & a_{mn} \pm b_{mn} \end {pmatrix} A±B= a11±b11a21±b21⋮am1±bm1a12±b12a22±b22⋮am2±bm2⋯⋯⋱⋯a1n±b1na2n±b2n⋮amn±bmn
例: ( 1 2 3 4 ) + ( 5 6 7 8 ) = ( 6 8 10 12 ) \begin {pmatrix} 1 & 2 \\ 3 & 4 \end {pmatrix} + \begin {pmatrix} 5 & 6 \\ 7 & 8 \end {pmatrix} = \begin {pmatrix} 6 & 8 \\ 10 & 12 \end {pmatrix} (1324)+(5768)=(610812)。 -
行列式的加减:本质是两个数值的加减,结果为单值,无需考虑行列式的阶数。
设 det ( A ) = x \det (\boldsymbol {A}) = x det(A)=x, det ( B ) = y \det (\boldsymbol {B}) = y det(B)=y,则 det ( A ) ± det ( B ) = x ± y \det (\boldsymbol {A}) \pm \det (\boldsymbol {B}) = x \pm y det(A)±det(B)=x±y。
例: ∣ 1 2 3 4 ∣ + ∣ 1 0 0 − 2 ∣ = − 2 + ( − 2 ) = − 4 \begin {vmatrix} 1 & 2 \\ 3 & 4 \end {vmatrix} + \begin {vmatrix} 1 & 0 \\ 0 & -2 \end {vmatrix} = -2 + (-2) = -4 1324 + 100−2 =−2+(−2)=−4。
4.4 其他关键运算差异
运算类型 | 矩阵(Matrix) | 行列式(Determinant) |
---|---|---|
乘法运算 | 需满足 “前矩阵列数 = 后矩阵行数”,结果为新矩阵(如 m × n m×n m×n 矩阵 × n × p n×p n×p 矩阵 = m × p m×p m×p 矩阵) | 无 “行列式乘法”,直接按数的乘法计算(如 det ( A ) × det ( B ) = x y \det (\boldsymbol {A}) \times \det (\boldsymbol {B}) = xy det(A)×det(B)=xy) |
逆运算 | 仅 n n n 阶可逆方阵( det ( A ) ≠ 0 \det (\boldsymbol {A})≠0 det(A)=0)有逆矩阵 A − 1 \boldsymbol {A}^{-1} A−1,满足 A A − 1 = E \boldsymbol {A}\boldsymbol {A}^{-1} = \boldsymbol {E} AA−1=E( E \boldsymbol {E} E 为单位矩阵) | 无 “逆行列式”,仅数值的逆( 1 / det ( A ) 1/\det (\boldsymbol {A}) 1/det(A)),属于数的运算 |
秩的概念 | 矩阵的秩是 “非零子式的最高阶数”,是矩阵的核心属性(如 2×3 矩阵的秩最大为 2) | 无 “秩” 的概念,仅通过行列式判断矩阵的秩(如 n n n 阶方阵秩为 n ⇨ det ( A ) ≠ 0 \det (\boldsymbol {A})≠0 det(A)=0) |
五、高阶行列式与高阶矩阵的计算差异
当阶数 / 维度 n ≥ 3 n≥3 n≥3 时,行列式与矩阵的计算方法和目标进一步分化,具体差异如下。
5.1 高阶行列式的计算(目标:求数值 / 多项式)
高阶行列式(
n
≥
3
n≥3
n≥3)的核心思路是**“降阶” 或 “化简为特殊形式”**,避免直接使用复杂度极高的莱布尼茨公式(
O
(
n
!
)
O (n!)
O(n!) 复杂度)。常用方法包括:
1.展开定理:选择元素含 0 较多的行 / 列,按该行 / 列展开为低阶行列式(如 3 阶行列式展开为 2 阶行列式);
2.三角化:利用行列式性质(如行变换)将其化为 “上三角行列式” 或 “下三角行列式”,此时行列式值等于主对角线元素的乘积(例: ∣ 1 2 3 0 4 5 0 0 6 ∣ = 1 × 4 × 6 = 24 \begin {vmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end {vmatrix} = 1×4×6 = 24 100240356 =1×4×6=24);
3.特殊公式:如范德蒙德行列式(适用于元素为幂次形式的行列式)、分块行列式法则(适用于分块对角 / 三角矩阵)。
5.2 高阶矩阵的计算(目标:变换 / 衍生新结构)
高阶矩阵( m , n ≥ 3 m,n≥3 m,n≥3)的计算围绕 “数表操作” 展开,核心是通过变换或运算提取有用信息,常用方法包括:
1.初等行变换:将矩阵化为 “行阶梯形矩阵”(用于求秩、解线性方程组)或 “行最简形矩阵”(用于求逆矩阵、向量组的极大无关组);
2.矩阵分解:如 LU 分解(拆分为下三角矩阵 L L L 和上三角矩阵 U U U,用于快速求解线性方程组)、QR 分解(拆分为正交矩阵 Q Q Q 和上三角矩阵 R R R,用于特征值计算);
3.特征值与特征向量:通过求解特征方程 det ( A − λ E ) = 0 \det (\boldsymbol {A} - \lambda \boldsymbol {E}) = 0 det(A−λE)=0 得到特征值 λ \lambda λ,再解方程组 ( A − λ E ) x = 0 (\boldsymbol {A} - \lambda \boldsymbol {E})\boldsymbol {x} = \boldsymbol {0} (A−λE)x=0 得到特征向量,用于主成分分析、振动分析等场景。
六、应用领域的分化
行列式与矩阵的应用场景由其本质决定:行列式是 “方阵性质的量化工具”,矩阵是 “线性关系的载体”。
6.1 矩阵的应用
矩阵是线性代数的 “基础运算单元”,广泛应用于需描述线性关系的领域:
- 线性方程组求解:将方程组 A x = b A\boldsymbol {x} = \boldsymbol {b} Ax=b 转化为矩阵形式,通过行变换或矩阵求逆求解;
- 线性变换表示:如平面旋转、空间拉伸等线性变换,可通过矩阵乘法实现(例:旋转 θ \theta θ 角的矩阵为 ( cos θ − sin θ sin θ cos θ ) \begin {pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end {pmatrix} (cosθsinθ−sinθcosθ));
- 数据科学与工程:主成分分析(PCA)中的数据降维、图像处理中的像素变换、机器学习中的模型参数求解(如线性回归的正规方程)。
6.2 行列式的应用
行列式的价值在于 “通过数值反映方阵性质”,应用多作为矩阵分析的辅助工具:
- 判断方阵可逆性: n n n 阶方阵 A \boldsymbol {A} A 可逆 ⇨ det ( A ) ≠ 0 \det (\boldsymbol {A})≠0 det(A)=0(此时 A \boldsymbol {A} A 为非奇异矩阵);
- 线性方程组解的判定:对 A x = b A\boldsymbol {x} = \boldsymbol {b} Ax=b( A \boldsymbol {A} A 为 n n n 阶方阵), det ( A ) ≠ 0 \det (\boldsymbol {A})≠0 det(A)=0 ⇨ 方程组有唯一解(克莱姆法则);
- 线性变换的缩放率:行列式的绝对值表示线性变换对图形 “面积 / 体积” 的缩放比例(如 2 阶行列式绝对值为平面图形的面积比)。
七、差异对照表
对比维度 | 矩阵(Matrix) | 行列式(Determinant) |
---|---|---|
本质属性 | 矩形数表(数据载体) | 数值函数(方阵的数量特征) |
结构约束 | m × n m×n m×n( m m m 与 n n n 可不等) | 仅 n n n 阶方阵( m = n m=n m=n) |
运算结果 | 新矩阵、向量、秩等 | 单值(实数或复数) |
数乘规则 | 常数乘所有元素 | 常数乘某一行 / 列 |
核心功能 | 表示线性关系、进行线性运算 | 判断方阵性质、量化缩放率 |
应用定位 | 基础运算单元(直接用于问题求解) | 辅助工具(用于分析矩阵性质) |
简言之,矩阵是 “表”,行列式是 “数”:矩阵的核心是 “结构与关系”,行列式的核心是 “方阵的数值属性”。二者虽有关联(仅方阵对应行列式),但属于线性代数中不同的概念体系,理解其差异是掌握线性代数的关键前提。