近年来,随着大模型(如 ChatGPT、视觉基础模型、扩散模型等)的迅猛发展,人工智能正以前所未有的速度改变着我们的生活与工作。然而,在享受大模型带来的便捷与创新的同时,其潜藏的安全隐患也逐渐浮出水面。从对抗攻击到越狱提示,再到数据中毒和模型窃取,大模型安全问题日益严峻,成为技术界和社会各界关注的焦点。本文将基于论文《Safety at Scale: A Comprehensive Survey of Large Model Safety》深度解析大模型安全的核心威胁、攻防策略以及未来研究方向,并探讨如何构筑一座坚固的“安全护城河”。
一、大模型:技术奇迹与双刃剑
1.1 大模型的崛起与突破
-
海量预训练:大模型通过大规模数据训练,具备卓越的理解与生成能力。
-
多领域应用:从自然语言处理、图像生成到自动驾驶、医疗诊断,大模型均展现出非凡的技术实力。
-
代表性实例:
-
ChatGPT:流畅对话与高质量文本生成。
-
视觉基础模型(VFM)与视觉语言模型(VLM):在图像理解、生成以及跨模态任务中表现突出。
-
1.2 大模型安全隐患:不可忽视的“暗礁”
大模型在强大能力的背后,隐藏着多种安全风险,包括但不限于:
-
对抗攻击
-
微小扰动即可误导模型判断
-
图像领域的 Patch Attack、Position Embedding Attack、Attention Attack
-
文本领域的字符级、词级扰动
-
-
后门与数据中毒
-
恶意样本注入训练数据
-
训练过程中植入隐蔽“后门”,在特定条件下触发异常行为
-
-
越狱与提示注入