大模型“安全护城河”全景解读:从攻防博弈到未来展望

近年来,随着大模型(如 ChatGPT、视觉基础模型、扩散模型等)的迅猛发展,人工智能正以前所未有的速度改变着我们的生活与工作。然而,在享受大模型带来的便捷与创新的同时,其潜藏的安全隐患也逐渐浮出水面。从对抗攻击到越狱提示,再到数据中毒和模型窃取,大模型安全问题日益严峻,成为技术界和社会各界关注的焦点。本文将基于论文《Safety at Scale: A Comprehensive Survey of Large Model Safety》深度解析大模型安全的核心威胁、攻防策略以及未来研究方向,并探讨如何构筑一座坚固的“安全护城河”。


图片

一、大模型:技术奇迹与双刃剑

1.1 大模型的崛起与突破

  •  海量预训练:大模型通过大规模数据训练,具备卓越的理解与生成能力。

  • 多领域应用:从自然语言处理、图像生成到自动驾驶、医疗诊断,大模型均展现出非凡的技术实力。

  •  代表性实例

    •  ChatGPT:流畅对话与高质量文本生成。

    • 视觉基础模型(VFM)与视觉语言模型(VLM):在图像理解、生成以及跨模态任务中表现突出。

1.2 大模型安全隐患:不可忽视的“暗礁”

大模型在强大能力的背后,隐藏着多种安全风险,包括但不限于:

  •  对抗攻击

    • 微小扰动即可误导模型判断

    •  图像领域的 Patch Attack、Position Embedding Attack、Attention Attack

    •  文本领域的字符级、词级扰动

  • 后门与数据中毒

    •  恶意样本注入训练数据

    • 训练过程中植入隐蔽“后门”,在特定条件下触发异常行为

  • 越狱与提示注入

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI安全这点事

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值