Bloch定理
能带理论中,电子满足的薛定谔方程为
[−ℏ22m∇2+V(r)]ψ(r)=Eψ(r)
其中
V(r+Rn)=V(r)
Bloch定理:方程的解为
ψ(r+Rn)=eik⋅Rnψ(r)
即,平移晶格矢量Rn 时,波函数只增加位相因子eik⋅Rn.
证明
在晶体中引入描述平移操作的算符T1,T2,T3,对任意的函数f(r)满足
Tαf(r)=f(r+aα),α=1,2,3
其中aα是单位基矢。
平移任意晶格矢量Rm=m1a1+m2a2+m3a3对应的算符为
T=Tm11Tm22Tm33.对任意的函数f(r),
TαTβf(r)=Tαf(r+aβ)=f(r+aβ+aα)=Tβf(r+aα)=TβTαf(r)
所以TαTβ=TβTα,即平移算符之间相互对易。
对任意的函数f(r),
TαHf(r)=[−ℏ22m∇2r+aα+V(r+aα)]f(r+aα)
其中∇2r+aα=∇2r,V(r+Rn)=V(r),所以
TαHf(r)=[−ℏ22m∇2r+V(r)]f(r+aα)=HTαf(r)
所以TαH=HTα,即Tα,H对易。所以Tα和H有相同的本征函数,即波函数。
下面需要确定三个本征值。引入周期性边界条件
⎧⎩⎨⎪⎪ψ(r)=ψ(r+N1a1)=TN11ψ(r)ψ(r)=ψ(r+N2a2)=TN22ψ(r)ψ(r)=ψ(r+N3a3)=TN33ψ(r)
其中N1,N2,N3分别是三个方向上的原胞数目。
将两组方程联立,得到
⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪λ1=e2πil1N1λ2=e2πil2N2l1,l2,l3∈Nλ3=e2πil3N3
引入简约波矢k=l1N1b1+l2N2b2+l3N3b3,b1,b2,b3为倒格基矢,则有
⎧⎩⎨λ1=ek⋅a1λ2=ek⋅a2λ3=ek⋅a3
所以
ψ(r+Rn)=Tm11Tm22Tm33ψ(r)=λm11λm22λm33ψ(r)=eik⋅(m1a1+m2a2+m3a3)ψ(r)=eik⋅Rnψ(r)
Bloch定理得证。
讨论
根据Bloch定理,周期势场中的单电子波函数是平面波和周期函数的乘积
ψ(r)=eik⋅r⋅U(r)
其中
U(r+Rn)=U(r)
即,按照布拉法格子周期性调制的平面波。称为Bloch函数。简约波矢改变一个倒格矢Gn=N1b1+N2b2+N3b3,波函数不变,所以简约波矢可以限定在一个倒格子原胞之内,即k=l1N1b1+l2N2b2+l3N3b3,
⎧⎩⎨0≤l1<N10≤l2<N20≤l3<N3
或者将k限定在第一布里渊区。
本文主要参考Mr. Shen的课件