PWCNet optical flow (tf版)

本文针对tf版OptFlow在训练过程中遇到的loss不收敛、收敛慢及loss=NaN等问题,提出了解决方案,包括进行梯度剪裁和调整卷积核大小。通过修改model_pwcnet.py文件中的特定行,可以有效改善训练效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.tf 版 调试源代码
https://github.com/philferriere/tfoptflow

问题描述:在训练时,loss不收敛,收敛慢,以及出现loss=NaN的情况。
解决方案:
1.进行梯度剪裁
修改model_pwcnet.py
line317-318.
在这里插入图片描述
2.我发现 def deconv中使用了偶数卷积核,觉得不太恰当,将4修改为3
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值