两步打开tensorboard

本文介绍如何找到事件输出文件的路径并使用TensorBoard查看。通过在终端输入特定命令,即可启动TensorBoard并直接点击链接访问。文章附有操作步骤及结果展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 找到事件输出文件的路径
    文件路径
    2.终端输入
tensorboard --logdir=/path/

在这里插入图片描述
3.注意,直接点开 链接就可以了,(我发现复制链接容易出错)
在这里插入图片描述

4.结果如图在这里插入图片描述

### 如何在 Unity 中集成或使用 TensorBoard TensorBoard 是 TensorFlow 提供的一种可视化工具,用于监控机器学习模型的训练过程。它可以通过图表展示损失函数的变化、准确率的趋势以及其他指标的表现。为了在 Unity 的 ML-Agents 工具包中使用 TensorBoard,可以按照以下方法进行配置。 #### 1. **安装必要的 Python 包** 确保已经安装了 `mlagents` 和 `tensorflow` 这两个 Python 包。如果尚未安装这些包,可以通过 pip 安装它们: ```bash pip install mlagents tensorflow tensorboard ``` 此命令会同时安装 ML-Agents 所需的基础库以及 TensorBoard 可视化工具[^2]。 #### 2. **启用 TensorBoard 日志记录** ML-Agents 支持将训练数据导出为 TensorBoard 兼容的日志文件。为此,需要修改 YAML 文件中的配置项。具体来说,在 trainer_config.yaml 或其他自定义配置文件中添加如下字段: ```yaml summary_freq: 1000 model_path: ./models/{run_id} summaries: - name: reward type: scalar ``` 其中: - `summary_freq`: 表示每隔多少步保存一次日志。 - `summaries`: 列出了希望记录的数据类型及其名称。这里以奖励 (`reward`) 为例[^5]。 完成以上设置后,运行训练脚本时,ML-Agents 将自动生成兼容 TensorBoard 的事件文件 (event files),通常位于指定的 model 路径下。 #### 3. **启动 TensorBoard** 一旦开始训练并生成了日志文件,就可以通过终端启动 TensorBoard 来查看实时更新的结果: ```bash tensorboard --logdir=./models/{run_id} --port=6006 ``` 打开浏览器访问地址 http://localhost:6006 即可看到详细的统计信息和趋势图[^4]。 #### 4. **注意事项** 虽然 TensorBoard 主要是基于 Python 实现的功能扩展,但它完全适用于 Unity 场景下的 AI 训练需求。不过需要注意的是,Unity 版本应至少为 2019.4 LTS,并且建议搭配最新稳定版的 ML-Agents 插件一起工作,这样才能充分利用所有特性[^2]。 --- ### 示例代码:简单的平衡球案例配合 TensorBoard 使用 以下是结合引用材料提到的“平衡球”案例来演示如何利用 TensorBoard 监控训练进展的小例子[^4]: 假设我们已经有了一个基本的工作环境,则只需调整好对应的超参即可开启流程: ```python from unityagents import UnityEnvironment import numpy as np env = UnityEnvironment(file_name="path_to_your_build") brain_name = env.brain_names[0] brain = env.brains[brain_name] trainer_config_file = './trainer_config.yaml' !mlagents-learn {trainer_config_file} --run-id=tensor_test --train ``` 执行完毕之后再依照前述方式加载 TensorBoard 页面就能直观了解整个进程状况啦! ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值