基于韦伯特征的非结构化道路检测

本文详细介绍了使用韦伯特征进行非结构化道路检测的方法,包括滤波器应用、图像处理、边缘检测、方向梯度计算及投票机制,最终定位非结构化道路的消失点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于韦伯特征的非结构化道路检测

步骤:

1. 取滤波器kernal={1,1,1, 1,-8,1, 1,1,1};

2. 遍历图像,获取当前点center和当前点八个方向点的像素p1,p2,p3,p4,p5,p6,p7,p8,并进行运算:v00 = (p1+p2+p3+p4+p5+p6+p7+p8)-8*center;

3. 如果center的像素值不等于0,对v00 进差分激励:atan(v00/center);

4. 设置阈值,保存差分激励图像,即边缘图像;

5. 计算当前点的方向梯度,atan((p2-p7)/(p4-p5))*180*CV_PI,并保存;

6. 根据差分激励图像和梯度方向进行投票,即:根据当前点与方向可确定一条直线,对直线上的所有点进行投票;

7. 对投票结果进行遍历,票数最多的点即为非结构化道路的消失点。


检测结果如下:


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值