监督学习和无监督学习的区别

本文探讨了机器学习中两大核心领域:监督学习与无监督学习。监督学习依赖于带标签的数据集,通过训练模型来预测未知数据;无监督学习则在无标签数据中寻找内在结构,如聚类。文章还介绍了几种常见的距离度量方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

监督无监督

根据训练数据是否有标签,学习任务可大致划分为“监督学习”和“无监督学习”。

监督学习方法必须要有训练集与测试样本。利用训练数据集学习一个模型,再用模型对测试样本集进行预测。

无监督学习没有训练集,只有一组数据,在该组数据集内寻找规律。试图使簇内差距最小化,簇间差距最大化。

距离度量

p=1  曼哈顿距离

p = 2  欧式距离

p=\infty 切比雪夫距离

余弦距离

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值