win下conda安装多版本cuda

本文介绍了如何通过conda环境来安装和管理多个CUDA版本,以满足TensorFlow-GPU的不同需求。首先查看当前CUDA版本和conda支持的CUDA工具包版本,然后创建一个新的conda环境,安装指定版本的CUDA工具包和cuDNN。接着激活环境并安装所需版本的TensorFlow-GPU。最后,验证安装是否成功。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

需求/问题

电脑只能安装一个cuda,但是往往研究tensorflow-gpu的时候,可能需要多个版本的cuda,利用conda可以实现安装多个版本。

安装教程

查看当前cuda版本

nvcc -V

在这里插入图片描述

查看conda支持的cudatoolkit版本,这个命令就是看下版本支持,看看就行。下面的命令查看cudnn版本比较重要

conda search cudatoolkit --info

在这里插入图片描述

支持cudnn的版本,这里我们安装cudnn7.6.5,cuda10.1,需要的cudatoolkit是10.1

conda search cudnn --info

在这里插入图片描述

创建python环境

conda create -n ten-gpu python=3.7

激活ten-gpu环境

conda activate ten-gpu

在这里插入图片描述
根据上面的提示安装cudatoolkit

conda install cudatoolkit=10.1

在这里插入图片描述
命令conda list查看是否安装完成
在这里插入图片描述

conda install cudnn=7.6.5

在这里插入图片描述
安装gpu版本2.2.0

pip install tensorflow-gpu==2.2.0

在这里插入图片描述

检查是否安装成功

>>> import tensorflow as tf
>>> tf.__version__

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小~小

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值