pandas DataFrame的分类汇总

此篇博客展示了如何使用pandas DataFrame对数据进行分组,按'E'列的国家标签进行聚合,计算各组的总和。通过实例演示了如何利用Python进行数据处理,并关注了不同国家的数据分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar','foo', 'bar', 'foo', 'foo'],
                   'B' : ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],
                    'C' : np.random.randn(8),
                    'D' : np.random.randn(8),
                  'E':['China','Japan','Russia','Russia','Japan','China','China','Japan'],
                   'F':np.random.randn(8)})

# df.to_excel()

print(df)

grouped = df.groupby('E')# 可以加一个as_index=False, 看看有什么不一样
print(grouped.aggregate(np.sum))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值