NLP中三种特征抽取器的优与劣

本文探讨了RNN(包括LSTM和GRU)与CNN在处理序列数据时的优劣。RNN虽然能处理不定长的序列数据,但在速度上受限于其串行计算方式,且难以捕捉全局信息,特别是序列过长时。相比之下,CNN通过卷积核能在固定窗口内并行处理数据,更高效地捕捉局部特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

RNN ( LSTM, GRU ) :
缺点(1):无法并行,因此速度较慢
(2):RNN无法很好地学习到全局的结构信息,尤其对于序列结构很长的

CNN:
BERT:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值