BP神经网络算法即误差逆传播算法(error Back Propagation),先将输入层输入的数据提供给输入层神经元,然后逐层将信号前传,直到产生输出层的结构;然后计算输出层的误差,再将误差逆向传播至隐层神经元,最后根据隐层神经元的误差来对连接权和阈值进行调整,如此循环迭代,直到达到某些条件为止。
一般而言,只需包含一个足够多神经元的隐层,就能以任意精度逼近任意复杂度的连续函数,故下面以训练单隐层的前馈神经网络为例。
上图为一个单隐层前馈神经网络的拓扑结构,BP神经网络算法也使用梯度下降法,以单个样本的均方误差的负梯度方向对权重进行调节。可以看出:BP算法首先将误差反向传播给隐层神经元,调节隐层到输出层的连接权重与输出层神经元的阈值;接着根据隐含层神经元的均方误差,来调节输入层到隐含层的连接权值与隐含层神经元的阈值。BP算法基本的推导过程与感知机的推导过程原理是相同的,下面给出调整隐含层到输出层的权重调整规则的推导过程