# coding: utf8
import numpy
from keras.models import Sequential
from keras.layers.core import Dense, Activation, Dropout
from keras.layers import LSTM
import numpy as np
import random
path = './poetry.txt'
print('opening txt')
text = open(path, "r", encoding='utf-8').read().lower()
print('corpus length:', len(text))
chars = set(text)
print('total chars:', len(chars))
char_indices = dict((c, i) for i, c in enumerate(chars))
indices_char = dict((i, c) for i, c in enumerate(chars))
# cut the text in semi-redundant sequences of maxlen characters
maxlen = 40
step = 3
sentences = []
next_chars = []
for i in range(0, len(text) - maxlen, step):
sentences.append(text[i: i + maxlen])
next_chars.append(text[i + maxlen])
print('nb sequences:', len(sentences))
#########向量化###########
print('Vectorization...')
X = np.zeros((len(sentences), maxlen, len(chars)), dtype=np.bool)
y = np.zeros((len(sentences), len(chars)), dtype=np.bool)
for i, sentence in enumerate(sentences):
基于Keras2.x LSTM 唐诗生成
于 2023-04-07 16:32:36 首次发布