概述
参数估计是用抽样分布作为中介,用样本的参数特征对总体的参数进行数值估计的过程。根据总体参数估计结果的性质不同,可以区分为点估计和区间估计。参数估计主要围绕均值、方差和标准差展开。
点估计
点估计即是用某个具体的样本参数直接代表未知的总体参数。常用的点估计是矩估计和最大似然估计。
矩估计
矩估计是指使用样本矩及其函数去替换相应的总体矩及其函数:
如:用样本均值估计总体均值;用样本方差估计总体方差;用样本中位数估计总体中位数。
矩估计的优点:
不依赖总体的分布,简便易行;只要样本数量N充分大,精确度也很高
矩估计的缺点:
精度较差;要求总体的某个K阶矩存在
最大似然估计
是利用已知样本的结果,反推最大概率导致这样结果的参数值。
通过小故事来说明最大似然估计的基本思想:
某位猎场小白同学与一位资深猎人外出打猎,一直野兔从前方窜过。只听到一声枪响,兔子应声倒下。这时候推测:是谁打中了兔子?
这时候我们会想,一枪就中,最有可能(最大概率)就是猎人打中的
最大似然估计优点:
利用了分布函数的形式,得到的估计量精度一般较高
最大似然估计缺点:
要求必须知道总体的分布函数形式
区间估计
区间估计就是推断总体参数时,根据抽样分布的特征,给出可能包含总体参数的一个数值区间(点估计只是一个具体数值),同时给出总体参数落在这个区间的可能性,即概率保证。
总体均值的区间估计
总结:
例题:
总体比例的区间估计
总体方差的区间估计
样本容量的确定
我们都知道,样本容量直接影响到数据分析结果的准确性以及抽样费用。样本容量越大,抽样误差就越小,总体参数的推断结果就越精确。大样本往往会造成高昂的抽样费用,小样本又导致抽样误差的增大,所以抽样之前必须确定一个适当的样本容量,在控制成本的同时还可以保证一定的准确性。
总体均值的样本容量确定
例题:
总结
第七周的作业拖了很久了,这次主要是将大神们的博客或PPT整理成学习笔记,还有一点感受就是,公式推导比较烧脑,初步学习的时候可以先记住,会应用即可。
参考
点估计:https://wenku.baidu.com/view/4e2bfbea710abb68a98271fe910ef12d2af9a911.html
区间估计:https://blog.csdn.net/liangzuojiayi/article/details/78043658
区间估计和样本容量:https://wenku.baidu.com/view/11d936ed0975f46527d3e14b.html