点云语义分割:RandLA-Net解读

本文深入探讨RandLA-Net在点云语义分割中的应用,详细阐述局部特征聚合模块,包括局部空间编码、注意力池化和扩张残差块的工作原理。同时,介绍了其采用的类似Unet的Encoder-Decoder结构,以及数据预处理的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、局部特征聚合模块

1.1、局部空间编码(Local Spatial Encoding)

作用:获取每个点的邻域特征。
方法:获取局部空间编码主要有3步,以一个点 A A A为例,
第一步是找邻域点(Finding Neighbouring Points),通过KNN算法找到该点最邻近的K个点(包括该点);此时该点的邻域表达形式是K X (3+d)的矩阵。
第二步是相对位置编码(Relative Point Encoding),具体实现是通过一个共享的MLP网络,形式如下:

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GHZhao_GIS_RS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值