点云语义分割:RandLA-Net解读 一、局部特征聚合模块 1.1、局部空间编码(Local Spatial Encoding) 1.2、注意力池化(Attentive Pooling) 1.3、扩张残差块(Dilated Residual Block) 二、语义分割网络 三、数据预处理 一、局部特征聚合模块 1.1、局部空间编码(Local Spatial Encoding) 作用:获取每个点的邻域特征。 方法:获取局部空间编码主要有3步,以一个点 A A A为例, 第一步是找邻域点(Finding Neighbouring Points),通过KNN算法找到该点最邻近的K个点(包括该点);此时该点的邻域表达形式是K X (3+d)的矩阵。 第二步是相对位置编码(Relative Point Encoding),具体实现是通过一个共享的MLP网络,形式如下: