http://files.is.tue.mpg.de/black/papers/cvpr2015_pcaflow.pdf
First, we normalize the image contrast using CLAHE [55] to increase detail that can be capturedby the feature detectors. Then, we use the featuresfrom [17], which are designed for visual odometry applications.We found that to match features across video frames,these features work much better than image matchingfeatures such as SURF or SIFT. The latter are invariantagainst a wide range of geometric deformations whichrarely occur in adjacent frames of a video, and hence returna large number of mismatches.
[55] K. Zuiderveld. Contrast limited adaptive histogramequalization. In P. S. Heckbert, editor, Graphics GemsIV, pages 474–485. Academic Press Professional, Inc.,San Diego, CA, USA, 1994.
code : http://www.cnblogs.com/Imageshop/archive/2013/04/07/3006334.html
https://github.com/joshdoe/opencv-clahe
[17] A. Geiger, J. Ziegler, and C. Stiller. StereoScan:Dense 3D reconstruction in real-time. In IntelligentVehicles Symposium (IV), 2011 IEEE, pages 963–968,June 2011.
code : http://www.cvlibs.net/software/libviso/