PCAFlow-Sparse feature matching

本文介绍了一种视频帧间特征匹配的方法,首先利用CLAHE进行图像对比度归一化以增强细节,然后采用专为视觉里程计设计的特征进行匹配。实践表明,这种方法相较于SURF或SIFT等传统图像匹配特征,在视频相邻帧间有更好的匹配效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://files.is.tue.mpg.de/black/papers/cvpr2015_pcaflow.pdf

First, we normalize the image contrast using CLAHE [55] to increase detail that can be capturedby the feature detectors. Then, we use the featuresfrom [17], which are designed for visual odometry applications.We found that to match features across video frames,these features work much better than image matchingfeatures such as SURF or SIFT. The latter are invariantagainst a wide range of geometric deformations whichrarely occur in adjacent frames of a video, and hence returna large number of mismatches. 

[55] K. Zuiderveld. Contrast limited adaptive histogramequalization. In P. S. Heckbert, editor, Graphics GemsIV, pages 474–485. Academic Press Professional, Inc.,San Diego, CA, USA, 1994.

code : http://www.cnblogs.com/Imageshop/archive/2013/04/07/3006334.html

           https://github.com/joshdoe/opencv-clahe

[17] A. Geiger, J. Ziegler, and C. Stiller. StereoScan:Dense 3D reconstruction in real-time. In IntelligentVehicles Symposium (IV), 2011 IEEE, pages 963–968,June 2011.

code : http://www.cvlibs.net/software/libviso/ 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值