Stable Diffusion模型训练 — 前菜

图像生成模型原理简析

你有没有好奇过,AI图像生成模型是怎么学会“绘画”的吗?人工智能(Artificial Iitelligence)这个概念是在1956年的达特矛斯会议上提出来的认为机器可以模仿人类的学习以及其他方面的智能,后世也将实现人工智能的方式统称为机器学习,我们将提供数据、引导机器学习的过程成为模型的训练(Train)训练的结果是得到了一系列让AI可以表现得更好地“知识”,也就是模型(Models)。而后续运用模型解决问题的过程就叫做推理(Inference)。

在AI绘画这个领域,我们塞给AI的学习资料就是研究者们通过互联网抓取下来的海量图片,这些图片连同用于描述他们的文字信息构成了用来学习的数据集(Dataset)。这下我们应该就能理解了:当我们通过提示词告诉模型一个想要画的东西时,AI就可以很轻松的从它那庞大的“知识储备”里找到对应的图片,再将里面的东西组合在一起一副“AI生成”的画作就诞生了,是这样的吗?当然不是,这样通过提示词匹配再将图片拼在一起的事情我们大多数人都能做,哪用得着AI。

言归正传,数据量所存储的其实不是这些图片本身,而是图片里蕴含的“像素分布规律”,我们在电脑屏幕上的每一张图片,其实都是由不同颜色的像素点构成的,每个像素点可以用红、绿、蓝三种颜色的色值(R/G/B)表示

像素分布规律就是解释这些不同颜色的点是如何排列组合形成各种事物的,这种事情在人类的世界里并不常见,去“认识”一个东西似乎是我们与生俱来的天赋。像现在,让人类来做一道连线题,把这些图片和它们对应的含义匹配到一起,你不用想就可以做出来对吧?

但对AI来说并不容易,因为在它的世界里,这些图片长这样,一堆像素数据的排列组合。

那只能靠猜了吗?事实上AI最开始确实就是靠猜的,但我们会通过学习算法的设计,引导它记住那些正确的选择,这个过程重复成千、上万甚至数亿次,

它就会在不断的试错中变得越来越“聪明”,从而总结出各种形象对应的像素分布规律。

例如篮球,大概就是一堆代表橙色的像素数据汇聚成一个圆形,中间夹杂着一些黑色的点排列成线条

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Simple Han

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值