损失函数之均方误差MSE(一般用于回归问题)

本文介绍了回归问题的概念及其与分类问题的区别,重点讲解了回归问题中常用的损失函数——均方误差(MSE),并给出了TensorFlow中实现MSE的具体代码示例。

回归问题分类问题不同,分类问题是判断一个物体在固定的n个类别中是哪一类回归问题是对具体数值的预测。比如房价预测,销量预测等都是回归问题,这些问题需要预测的不是一个事先定义好的类别,而是一个任意实数。解决回归问题的神经网络一般只有一个输出节点,这个节点的输出值就是预测值。

 

而回归问题最常用的损失函数是均方误差MSE,定义如下:

MSE(y,y')=\frac{\sum_{i=1}^{n}(y_{i}-y_{i}^{'})}{n} ^{2}

上式中,yi为一个batch中第 i 个数据的正确答案,而y_{i}^{'}为神经网络给出的预测值。

MSE是求一个batch(一批的数据)的平均误差的函数。

 

在tensorflow中,有接口:

mse = tf.reduce_mean(tf.square(y_-y))

其中 reduce_mean()是求平均值的函数,y_为标准答案,y为预测答案。y和y_都是一组向量。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值