springboot+kafka

本文介绍了一个基于Spring Boot的应用如何配置Kafka进行消息生产和消费。详细解释了配置项的作用,例如消息重试次数、批处理大小等,并展示了具体的生产者和消费者的实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

yml配置文件

spring:
  kafka:
    bootstrap-servers: 118.25.59.00:9092
    producer:
      # 发生错误后,消息重发的次数。
      retries: 0
      #当有多个消息需要被发送到同一个分区时,生产者会把它们放在同一个批次里。该参数指定了一个批次可以使用的内存大小,按照字节数计算。
      batch-size: 16384
      # 设置生产者内存缓冲区的大小。
      buffer-memory: 33554432
      # 键的序列化方式
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      # 值的序列化方式
      value-serializer: org.apache.kafka.common.serialization.StringSerializer
      # acks=0 : 生产者在成功写入消息之前不会等待任何来自服务器的响应。
      # acks=1 : 只要集群的首领节点收到消息,生产者就会收到一个来自服务器成功响应。
      # acks=all :只有当所有参与复制的节点全部收到消息时,生产者才会收到一个来自服务器的成功响应。
      acks: 1
    consumer:
      # 自动提交的时间间隔 在spring boot 2.X 版本中这里采用的是值的类型为Duration 需要符合特定的格式,如1S,1M,2H,5D
      auto-commit-interval: 1S
      # 该属性指定了消费者在读取一个没有偏移量的分区或者偏移量无效的情况下该作何处理:
      # latest(默认值)在偏移量无效的情况下,消费者将从最新的记录开始读取数据(在消费者启动之后生成的记录)
      # earliest :在偏移量无效的情况下,消费者将从起始位置读取分区的记录
      auto-offset-reset: earliest
      # 是否自动提交偏移量,默认值是true,为了避免出现重复数据和数据丢失,可以把它设置为false,然后手动提交偏移量
      enable-auto-commit: false
      # 键的反序列化方式
      key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      # 值的反序列化方式
      value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
    listener:
      # 在侦听器容器中运行的线程数。
      concurrency: 5
      #listner负责ack,每调用一次,就立即commit
      ack-mode: manual_immediate
      missing-topics-fatal: false

消息提供者

@Component
@AllArgsConstructor
@Slf4j
public class KafkaProducer {

    private final KafkaTemplate<String, String> kafkaTemplate;

    public void data(CmsCommonMember data){

        try {

            for (int i = 0; i < 1; i++)
            {
                kafkaTemplate.send("mykafka", JSON.toJSONString(data));
            }

        }catch (Exception e){
            e.printStackTrace();
            log.error("出错!!!!!!!!!!!");
        }

    }

}

消息消费者

@Component
@AllArgsConstructor
@Slf4j
public class KafkaConsumer {
    @Autowired
    KafkaProducer kafkaProducer;

    @KafkaListener(topics = "${kafka.topic}", groupId = "${kafka.group}")
    public void data(ConsumerRecord consumerRecord, Acknowledgment ack) {


        Optional<Object> kafkaMassage = Optional.ofNullable(consumerRecord.value());
        if(kafkaMassage.isPresent()){
            CmsCommonMemberCopy model = JSON.parseObject(kafkaMassage.get().toString(), CmsCommonMemberCopy.class);
            System.out.println(model.getUid());
            if(consumerRecord.offset()%2==1){

                CmsCommonMember cmsCommonMember=JSON.parseObject(kafkaMassage.get().toString(), CmsCommonMember.class);
                log.info("重发:{}",consumerRecord.offset());
                kafkaProducer.data(cmsCommonMember);
            }
            log.info("offset {}, value {}", consumerRecord.offset(), consumerRecord.value());
            ack.acknowledge();
        }

    }
}
Spring Boot是一个用于构建独立的、生产级别的Spring应用程序的框架。而Kafka是一个分布式的发布-订阅消息系统,可以处理大量数据并提供高吞吐量。在Spring Boot应用程序中使用Kafka可以通过导入spring-kafka的starter依赖来实现。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [SpringBoot整合Kafka](https://blog.csdn.net/m0_37294838/article/details/127253991)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [springboot整合kafka](https://blog.csdn.net/m0_74642813/article/details/131307133)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [springboot-kafka](https://blog.csdn.net/qq_47848696/article/details/125422997)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值