SparkSql中的repartition 与 coalesce

SparkSql的repartition和coalesce

repartition(numPartitions:Int)和coalesce(numPartitions:Int,shuffle:Boolean=false)
作用:对RDD的分区进行重新划分,repartition内部调用了coalesce,参数shuffle为true

例:RDD有N个分区,需要重新划分成M个分区

  1. N < M 使用
    repartition(M) 或者 coalesce(M,true)
    一般情况下N个分区有数据分布不均匀的状况,利用HashPartitioner函数将数据重新分区为M个,这时需要将shuffle设置为true。
  2. N > M 且 N 和M 相差不多
    coalesce(M) 或者 coalesce(M,false)
    假如N是1000,M是100)那么就可以将N个分区中的若干个分区合并成一个新的分区,最终合并为M个分区,这时可以将shuff设置为false,在shuffl为false的情况下,如果 N<M 时,coalesce为无效的,不进行shuffle过程,父RDD和子RDD之间是窄依赖关系。
  3. N > M 且 N 和M 相差悬殊
    repartition(M) 或者 coalesce(M,true)
    这时如果将shuffle设置为false,父子RDD是窄依赖关系,他们在同一个Stage中,就可能造成Spark程序的并行度不够,从而影响性能,如果在M为1的时候,为了使coalesce之前的操作有更好的并行度,可以讲shuffle设置为true。

总结:返回一个减少到numPartitions个分区的新RDD,这会导致窄依赖,例如:你将1000个分区转换成100个分区,这个过程不会发生shuffle,相反如果10个分区转换成100个分区将会发生shuffle。然而如果你想大幅度合并分区,例如所有partition合并成一个分区,这会导致计算在少数几个集群节点上进行(言外之意:并行度不够)。为了避免这种情况,你可以将第二个shuffle参数传递一个true,这样会在重新分区过程中多一步shuffle,这意味着上游的分区可以并行运行。

总之:如果shuff为false时,如果传入的参数大于现有的分区数目,RDD的分区数不变,也就是说不经过shuffle,是无法将RDD的partition数变多的

SparkSql 写hive小文件

重新分区+缓存+注册为临时表,在进行查询,插入操作,此时文件为20个

val aDF =hiveContext.table("info_user").repartition(2).persist()
aDF.registerTempTable("info_user")

后记

虽然减少spark并行度会造成一些性能问题,但是在写数据的时候少量的并行度可以减少hive碎片文件 ,或者减少对传统数据库的连接池的线程数量使用。

如果有读者遇见重新分区失效,或者有其他问题,欢迎即使交流

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值