混合高斯背景建模原理

本文介绍了混合高斯背景建模方法,用于处理自动驾驶中的背景识别问题。通过初始化高斯分布,判断像素匹配,更新模型,并确定背景模型,实现对静态和动态背景的有效区分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

混合高斯背景建模

混合高斯模:

背景图像的每一个像素分别用由K个高斯分布构成的混合高斯模型来建模
P(I)=∑q=1QwqNq(I;μq,σq2)Nq(I;μq,σq2)=12πσqe−(I−μq)22σq2 P(I) = \sum_{q=1}^Q w_q N_q(I;\mu_q, \sigma_q^2) \\ N_q(I;\mu_q, \sigma_q^2) = \frac{1}{\sqrt{2 \pi}\sigma_q} e^{-\frac{(I-\mu_q)^2}{2\sigma_q^2}} P(I)=q=1QwqNq(I;μq,σq2)Nq(I;μq,σq2)=2π σq1e2σq2(Iμq)2
III是输入的像素,NNN是混合高斯模型,wqw_qwq是混合高斯模型中第qqq个高斯分布的权值,μq\mu_qμqσq2\sigma_q^2σq2分别表示混合高斯模型中第qqq个高斯分布的均值和方差。

背景建模流程

  1. 初始化

    选择高斯分布的个数QQQ和学习率α\alphaα(通常在0.01~0.1之间)。

    输入第一帧图像,对每个像素I(1)I(1)I(1),分别初始化QQQ个均值μq=I(1)\mu_q=I(1)μq=I(1),方差为σq2\sigma_q^2σq2(取一个较大的值,具体自己设置)的高斯函数,对应的权重分别为wqw_qwqq=1,2,⋯ ,Qq=1,2,\cdots,Q

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值