混合高斯背景建模
混合高斯模:
背景图像的每一个像素分别用由K个高斯分布构成的混合高斯模型来建模
P(I)=∑q=1QwqNq(I;μq,σq2)Nq(I;μq,σq2)=12πσqe−(I−μq)22σq2 P(I) = \sum_{q=1}^Q w_q N_q(I;\mu_q, \sigma_q^2) \\ N_q(I;\mu_q, \sigma_q^2) = \frac{1}{\sqrt{2 \pi}\sigma_q} e^{-\frac{(I-\mu_q)^2}{2\sigma_q^2}} P(I)=q=1∑QwqNq(I;μq,σq2)Nq(I;μq,σq2)=2πσq1e−2σq2(I−μq)2
III是输入的像素,NNN是混合高斯模型,wqw_qwq是混合高斯模型中第qqq个高斯分布的权值,μq\mu_qμq和σq2\sigma_q^2σq2分别表示混合高斯模型中第qqq个高斯分布的均值和方差。
背景建模流程
-
初始化
选择高斯分布的个数QQQ和学习率α\alphaα(通常在0.01~0.1之间)。
输入第一帧图像,对每个像素I(1)I(1)I(1),分别初始化QQQ个均值μq=I(1)\mu_q=I(1)μq=I(1),方差为σq2\sigma_q^2σq2(取一个较大的值,具体自己设置)的高斯函数,对应的权重分别为wqw_qwq,q=1,2,⋯ ,Qq=1,2,\cdots,Q