【AI视野·今日Robot 机器人论文速览 第八十三期】Wed, 6 Mar 2024

AI视野·今日CS.Robotics 机器人学论文速览
Wed, 6 Mar 2024
Totally 30 papers
👉上期速览更多精彩请移步主页

在这里插入图片描述


Interesting:

📚SpaceHopper,外星探索多功能三足机器人 (from Robotic Systems Lab, ETH Zurich)
在这里插入图片描述在这里插入图片描述



Daily Robotics Papers

A Safety-Critical Framework for UGVs in Complex Environments: A Data-Driven Discrepancy-Aware Approach
Authors Skylar X. Wei, Lu Gan, Joel W. Burdick
这项工作提出了一种新颖的数据驱动的多层规划和控制框架,用于在存在未知固定障碍物和附加建模不确定性的情况下安全导航一类无人地面车辆 UGV。

MOKA: Open-Vocabulary Robotic Manipulation through Mark-Based Visual Prompting
Authors Fangchen Liu, Kuan Fang, Pieter Abbeel, Sergey Levine
开放词汇泛化要求机器人系统执行涉及复杂多样的环境和任务目标的任务。虽然视觉语言模型 VLM 的最新进展为解决看不见的问题提供了前所未有的机会,但如何利用其新兴功能来控制物理世界中的机器人仍然是一个悬而未决的问题。在本文中,我们提出了 MOKA 标记开放词汇关键点功能可供性,这是一种利用 VLM 来解决由自由形式语言描述指定的机器人操作任务的方法。我们方法的核心是基于紧凑点的可供性和运动表示,它将 VLM 对 RGB 图像的预测和机器人在物理世界中的运动联系起来。通过提示对互联网规模数据进行预训练的 VLM,我们的方法可以利用广泛来源的概念理解和常识知识来预测可供性并生成相应的动作。为了在零镜头中支撑 VLM 的推理,我们提出了一种视觉提示技术,可以在图像上注释标记,将关键点和路径点的预测转换为 VLM 可以解决的一系列视觉问答问题。利用以这种方式收集的机器人经验,我们进一步研究通过上下文学习和策略蒸馏来引导性能的方法。

Biomechanical Comparison of Human Walking Locomotion on Solid Ground and Sand
Authors Chunchu Zhu, Xunjie Chen, Jingang Yi
目前对人类运动的研究主要集中在坚实的地面行走条件上。在本文中,我们对人类在固体地面和沙子上行走的生物力学进行了比较。收集了一个新颖的数据集,其中包含 20 名身体健全的成年人在固体地面和沙子上运动的 3 维运动和生物力学数据。我们提出数据收集方法并报告传感器数据以及关节生物力学的运动学和动力学曲线。对人类步态和关节刚度曲线进行了综合分析。运动学和动力学分析表明,与在固体地面上行走的模式相比,人类在沙地上行走时表现出不同的地面反作用力和关节扭矩分布。这些步态差异反映了人类采用运动控制策略来适应沙地等地形条件。

Fast Iterative Region Inflation for Computing Large 2-D/3-D Convex Regions of Obstacle-Free Space
Authors Qianhao Wang, Zhepei Wang, Chao Xu, Fei Gao
1 限制性膨胀旨在确保生成的凸多面体的可管理性。根据其变量少、约束丰富的特点,设计了一种高效且数值稳定的求解器。 2 提出了一种将MVIE问题转化为SOCP公式的新方法,避免了直接面对正定约束,提高了计算效率。 3 特别是对于 2 D MVIE,首次引入了线性时间精确算法,填补了数十年的空白,进一步实现了超快的计算性能。 4 基于上述方法,提出了一种可靠的凸多面体生成算法FIRI。大量的实验验证了其在质量、效率、可管理性方面优越的综合性能。

Online Learning of Human Constraints from Feedback in Shared Autonomy
Authors Shibei Zhu, Tran Nguyen Le, Samuel Kaski, Ville Kyrki
由于不同的物理限制导致人类的行为模式不同,与人类的实时协作提出了挑战。现有的工作通常侧重于学习协作的安全约束,或者如何在参与代理之间划分和分配子任务以执行主要任务。相比之下,我们建议学习一个人类约束模型,此外,该模型还考虑不同人类操作员的不同行为。我们考虑一种共享自主方式的协作,其中人类操作员和辅助机器人在同一任务空间中同时行动,影响彼此的行动。辅助代理的任务是通过尽可能多地支持人类来增强人类执行共享任务的技能,既减少工作量,又最大限度地减少人类操作员的不适。

Single-Channel Robot Ego-Speech Filtering during Human-Robot Interaction
Authors Yue Li, Koen V Hindriks, Florian Kunneman
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值