动态规划求最长公共子序列

本文详细介绍了如何使用动态规划求解最长公共子序列问题,包括算法的分析、问题描述、递归结构、计算最优值的方法以及构造最长公共子序列的步骤。通过示例解释了算法的实现过程,帮助理解动态规划在解决此类问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、 伪代码

 LCS_LENGTH(X,Y);  

1. begin  

2.   m:=length[X];  

3.   n:=length[Y];  

4.   for i:=1 to m do c[i,0]:=0;  

5.   for j:=1 to n do c[0,j]:=0;  

6.   for i:=1 to m do  

7.     for j:=1 to n do  

8.       if x[i]=y[j] then  

9.         begin  

10.           c[i,j]:=c[i-1,j-1]+1;  

11.           b[i,j]:="↖";  

12.         end  

13.       else if c[i-1,j]≥c[i,j-1] then  

14.         begin  

15.           c[i,j]:=c[i-1,j];  

16.           b[i,j]:="↑";  

17.         end  

18.       else  

19.         begin  

20.           c[i,j]:=c[i,j-1];  

21.           b[i,j]:="←"  

22.         end;  

23.   return(c,b);  

24. end;  

LCS(b,X,i,j);  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fullstack_lth

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值