《图像处理、分析与机器视觉 第四版》数学形态学四原则——学习笔记

本文探讨了在图像理解和分析中,如何通过形态学方法实现空间结构的量化描述。介绍了量化的形态学变换需遵循的四个核心原则:与平移相容、与尺度缩放相容、局部知识及上部半连通原则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

形态学四原则

在实际应用问题中,需要对图像理解中的可能出现的形态学变换加以限制。

人类对空间结构(spatial structure)有一个直觉上的理解。要对物体进行客观描述外,科学家们还需要一个量化描述。

产生量化结果的形态学方法主要有两个步骤:(a)几何变换和(b)真实测量。

一个形态学变换称为是量化的,若它满足如下四条原则:

1. 与平移相容
在这里插入图片描述
2. 与尺度缩放相容
在这里插入图片描述
3. 局部知识
在这里插入图片描述
4. 上部半连通:

上部半边通原则规定形态学变换不能有任何突变。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

超级D洋葱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值