L2-013 红色警报 (25分),Tarjan

本文解析了一道关于城市连通性的算法题L2-013红色警报,通过修改Tarjan算法来判断失去某个城市是否会导致国家分裂成多个无法连通的区域,并提供了详细的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

L2-013 红色警报

原题:

战争中保持各个城市间的连通性非常重要。本题要求你编写一个报警程序,当失去一个城市导致国家被分裂为多个无法连通的区域时,就发出红色警报。注意:若该国本来就不完全连通,是分裂的k个区域,而失去一个城市并不改变其他城市之间的连通性,则不要发出警报。

输入格式:

输入在第一行给出两个整数N(0 < N ≤ 500)和M(≤ 5000),分别为城市个数(于是默认城市从0到N-1编号)和连接两城市的通路条数。随后M行,每行给出一条通路所连接的两个城市的编号,其间以1个空格分隔。在城市信息之后给出被攻占的信息,即一个正整数K和随后的K个被攻占的城市的编号。

注意:输入保证给出的被攻占的城市编号都是合法的且无重复,但并不保证给出的通路没有重复。

输出格式:

对每个被攻占的城市,如果它会改变整个国家的连通性,则输出Red Alert: City k is lost!,其中k是该城市的编号;否则只输出City k is lost.即可。如果该国失去了最后一个城市,则增加一行输出Game Over.。

输入样例:

5 4
0 1
1 3
3 0
0 4
5
1 2 0 4 3

输出样例:

City 1 is lost.
City 2 is lost.
Red Alert: City 0 is lost!
City 4 is lost.
City 3 is lost.
Game Over.

这个题当时看完就觉得是一道求割点的题,就学了两天求割点的算法,也就是Tarjan算法,结果呢做完了看看网上给的答案,真没想到还没有原始DFS快,跟并查集速度差不多,这里就当作提供一种方法吧。
修改了Tarjan算法,对于每个待比较的节点,将其作为Tarjan算法的根节点,原本割点的两个判断条件:
fat[x] == -1 && child >= 2 //节点x是根节点且有大于等于2子树
fat[x] != -1 && low[y] >= dfn[x] //节点x不是根节点且节点y最早可回到的时间戳大于节点x的时间戳
由于待比较节点是根节点,所以只用到第一个条件,且不需要low数组了,本来用于记录时间戳的times和dfn数组现在只需要判断y点是否访问过了。

#include <iostream>
#include <vector>
using namespace std;
int v, e, times;				//节点数,边数,时间戳
vector<vector<int>> matrix;		//邻接矩阵
vector<int> dfn, fat;			//时间戳数组,父节点数组
bool cut = false;				//是否为割点

void Tarjan_CUT_DFS(int x) {
	dfn[x] = times++;
	int child = 0;
	for (int y = 0; y < v; y++) {
		if (matrix[x][y]) {
			if (dfn[y] == 0) {
				child++;
				fat[y] = x;
				Tarjan_CUT_DFS(y);
				if (fat[x] == -1 && child >= 2) {
					cut = true;		//判断根节点是割点直接退出
					return;
				}
			}
		}
	}
}

int main() {
	ios_base::sync_with_stdio(0); cin.tie(0);
	cin >> v >> e;
	matrix = vector<vector<int>>(v, vector<int>(v, 0));
	for (int i = 0; i < e; i++) {
		int v1, v2;
		cin >> v1 >> v2;
		matrix[v1][v2] = 1;
		matrix[v2][v1] = 1;
	}
	int t;
	cin >> t;
	int tt;
	for (int i = 0; i < t; i++) {
		cin >> tt;
		times = 1;
		cut = false;
		dfn = vector<int>(v, 0);
		fat = vector<int>(v, -1);
		Tarjan_CUT_DFS(tt);
		for (int i = 0; i < v; i++) {
			matrix[tt][i] = 0;
			matrix[i][tt] = 0;
		}
		if (cut)cout << "Red Alert: City " << tt << " is lost!";
		else cout << "City " << tt << " is lost.";
		cout << endl;
	}
	if (t == v) {
		cout << "Game Over.";
	}
	return 0;
}
以下是使用并查集解决图论-桥问题的C++代码: ```c++ #include <iostream> #include <vector> using namespace std; const int MAXN = 1e5 + 5; int n, m, cnt, ans; int fa[MAXN], low[MAXN], dfn[MAXN]; vector<int> vec[MAXN]; int find(int x) { if (fa[x] == x) return x; return fa[x] = find(fa[x]); } void Union(int u, int v) { int x = find(u); int y = find(v); if (x != y) fa[x] = y; } void tarjan(int u, int pre) { low[u] = dfn[u] = ++cnt; for (int i = 0; i < vec[u].size(); i++) { int v = vec[u][i]; if (!dfn[v]) { tarjan(v, u); low[u] = min(low[u], low[v]); if (low[v] > dfn[u]) { ans++; Union(u, v); } } else if (v != pre) { low[u] = min(low[u], dfn[v]); } } } int main() { cin >> n >> m; for (int i = 1; i <= n; i++) fa[i] = i; for (int i = 1; i <= m; i++) { int u, v; cin >> u >> v; vec[u].push_back(v); vec[v].push_back(u); } tarjan(1, 0); cout << ans << endl; return 0; } ``` 其中,`find`函数是并查集中的查找函数,`Union`函数是合并两个集合的函数。 在`tarjan`函数中,`low[u]`表示u能够到达的最小dfn值,`dfn[u]`表示u的dfs序,`pre`表示u的父亲节点。当`v`是`u`的子节点时,如果`v`还没有被访问过,就递归调用`tarjan`函数,并更新`low[u]`的值。如果`low[v] > dfn[u]`,则说明(u, v)是桥,合并uv所在的集合。如果`v`已经访问过,并且v不是u的父亲节点,就更新`low[u]`的值。 最后输出ans即可,ans表示桥的数量。 注意:此代码实现并不是最优解,仅作为参考。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值