在RK3588上部署YOLOv8:从模型转换到量化剪枝的完整指南

在RK3588上部署YOLOv8:从模型转换到量化剪枝的完整指南


引言:边缘计算的挑战与RK3588的机遇

随着边缘计算需求的爆发式增长,如何将先进的目标检测模型部署到嵌入式设备成为关键挑战。Rockchip推出的RK3588芯片凭借6TOPS NPU算力和丰富接口,成为边缘AI的热门选择。本文将手把手讲解如何在RK3588上部署YOLOv8,并深入探讨模型量化、剪枝与蒸馏等优化技巧。


一、环境准备与工具链搭建

1.1 硬件准备

  • RK3588开发板(推荐Rock5B或Firefly ITX-3588J)
  • USB Type-C数据线(用于ADB调试)
  • 支持CUDA的PC开发机(用于模型转换)

1.2 软件环境

# PC端开发环境
conda create -n rk3588 python=3.8
pip install ultralytics==8.2.0 onnx==1.14.0 rknn-toolkit2==1.6.0

# 开发板端环境
sudo apt install libopencv-dev python3-opencv

二、模型转换三部曲

2.1 PyTorch -> ONNX 转换

from ultralytics import YOLO

model = YOLO('yolov8n.pt')  # 官方预训练模型
model.export(format='onnx'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值