与阿里云一起
轻松实现数智化
让算力成为公共服务:用大规模的通用计算,帮助客户做从前不能做的事情,做从前做不到的规模。让数据成为生产资料:用数据的实时在线,帮助客户以数据为中心改变生产生活方式创造新的价值。
模型部署
登录阿里云,访问阿里云人工智能业务平台PAI的控制台,选择模型厂商对应规格的模型,选择模型的部署方式,填写模型的基本属性,设置部署模型的资源类型,点击部署按钮,即可实现一键部署:
在线调试
部署大模型完成,查看模型在线服务(EAS)的管理页面,使用在线调试的功能,输入调用API接口的请求参数,向大模型服务发送请求信息,接收到大模型服务的响应信息,即可实现模型的测试:
API调用
大模型部署完成,人工智能业务平台PAI提供开放API接口的调用服务,在服务详情中可以查看外网的访问链接地址、安全访问的授权Token,提供给远程客户端或者智能体应用调用:
模型微调
微调是优化策略的训练任务,在人工智能业务平台PAI的控制台中,指定对应规格的大模型,点击训练按钮,创建微调训练任务:
在大模型训练页面中,指定训练方式,设置训练的属性,点击训练按钮,提交训练任务,提交训练的数据,即可实现一键训练:
模型评测
人工智能业务平台PAI支持使用公开数据集或者自定义数据集,对大模型执行评测,公开数据集由人工智能业务平台PAI维护,自定义数据集由开发者按照指定的数据格式,将数据上传到人工智能业务平台PAI:
在人工智能业务平台PAI的控制台中,指定对应规格的大模型,点击评测按钮,创建大模型评测任务:
在人工智能业务平台PAI的控制台中,查看任务管理页面,对训练完成的任务执行评测:
模型评测极简模式
模型评测模式包括极简模式以及专家模式,其中,极简模式的业务流程:
创建大模型评测任务,输入评测任务的属性,设置评测任务的输出路径,指定评测任务的数据集,数据集可以使用公开数据集或者自定义数据集:
设置评测任务使用公开数据集:
设置评测任务使用自定义数据集:
设置运行评测任务的GPU类型的计算资源:
模型评测专家模式
模型评测模式包括极简模式以及专家模式,其中,专家模式的业务流程:
创建大模型评测任务,输入评测任务的属性,设置评测任务的输出路径,指定评测任务的数据集,数据集可以使用公开数据集或者自定义数据集:
设置评测任务使用自定义数据集,专家模式支持同时使用公开数据集以及自定义数据集,公开数据集支持同时使用多个数据集:
从阿里云存储中使用已有的自定义数据集:
从本地上传自定义数据集到阿里云存储中:
设置运行评测数据集的算法参数:
设置运行评测任务的GPU类型的计算资源:
评测报告
在人工智能业务平台PAI的任务管理页面中,查看评测报告:
在任务管理页面中,点击查看报告,即可查看对应模型的评测报告:
在评测报告的页面中,包括自定义数据集的评测报告以及公开数据集的评测报告,评测报告中包括评测项的评分以及评测分析,自定义数据集的评测报告:
在评测报告的页面中,包括自定义数据集的评测报告以及公开数据集的评测报告,评测报告中包括评测项的评分以及评测分析,公开数据集的评测报告:
模型评测报告支持不同数据集的对比分析,自定义数据集的评测报告的对比分析:
模型评测报告支持不同数据集的对比分析,公开数据集的评测报告的对比分析: