医疗信息学中的计算方法应用
1. 引言
在过去十年里,随着技术的飞速发展,医疗数据量显著增加。计算方法在医疗信息学研究中的应用也日益广泛。计算医疗信息学是一个不断发展的研究领域,它融合了生物医学科学、信息技术和统计学,旨在分析医疗信息,预测患者的健康状况并提高医疗产出(HCO)。
电子健康记录(EHRs)存储着来自所有医疗系统的海量健康数据,目前已达到艾字节级别,且在未来几年有望突破泽字节和尧字节。生物医学信息学领域中,大数据的主要特征——体量大、种类多、速度快——正呈指数级增长。从医疗记录和医学诊断图像等各种来源获取的电子医疗数据,不仅数量巨大,而且性质复杂。传统系统由于数据的高维度和复杂性,在处理这些数据集时面临困难,常规的软硬件系统也难以对其进行有效分析。
大数据分析在处理这些庞大、复杂且多样的医疗数据集时发挥着重要作用,它能降低时间复杂度,提高医疗产出的质量,降低医疗成本,并实现更个性化的医疗服务。生物信息学则借助计算工具,为分析庞大的生物数据库提供了可能,推动了基因组学和蛋白质组学的研究,有助于疾病研究和药物发现,还为临床专家提供了决策支持工具,辅助他们做出更合理的决策。
2. 医疗信息学的计算方法
医疗信息学运用计算方法分析信息,以改善医疗和生物医学研究。它能在正确的时间将准确的健康状况信息传递给合适的人,帮助他们为患者的治疗做出明智的决策。计算医疗信息学的处理流程包含多个阶段,如下所示:
graph LR
A[健康信息资源] --> B[使用计算方法进行数据分析]
B --> C[改善医疗产出]
<