算法-构建二叉搜索树bst

本文介绍了如何构建二叉搜索树(BST),包括插入、搜索和删除操作的详细过程。插入时,根据节点大小关系决定插入位置;搜索时,利用二叉查找树的性质快速定位;删除节点时,根据节点的子树情况采取不同策略。平均时间复杂度为O(log(N)),最坏情况下为O(N)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

构建二叉搜索树bst

binaryt search tree construction

  • insert
  • search
  • delete

二叉查找树,根节点比所有左节点大,比右节点小

在这里插入图片描述

构建一颗二叉搜索树,实现二叉搜索树的插入,搜索,删除操作

insert

假设是上面的那个树,要插入的元素是12

在这里插入图片描述

根节点10比12小,因此根节点及左边部分不用修改,专注于右子树

由于12比15小,因此专注于15节点的左子树,一直往下走,成为13节点的左节点。此时完成整个插入操作;

search

二叉查找树找元素,根据二叉查找树的性质,比较容易的找到或者找不到该元素。

delete

二叉查找树删除元素,根据二叉查找树的性质,比较容易的找到对应的元素以及其父节点。此时会有几种情况

  • 如果该删除节点无
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

uncle_ll

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值