- 博客(124744)
- 资源 (6)
- 收藏
- 关注

原创 万字详解:36岁中国程序员未来三十年人生规划2025-2055
中国程序员36岁后的30年人生规划 36岁的中国程序员正处于职业与人生的关键转折点。面对技术迭代、AI崛起和行业变革,未来30年规划应分三阶段推进: 36-40岁(转型期):选择技术深耕或管理转型,聚焦AI、云计算等新兴领域,突破职业瓶颈,提升软技能。 41-50岁(黄金期):发展多元化职业路径,打造个人品牌,建立副业与投资组合,应对职业风险。 51-65岁(价值期):转向咨询、教育等柔性工作,参与公益活动,实现经验传承与人生价值。规划需兼顾技术敏感度、财务稳健和生活平衡,在快速变化的行业中保持持续竞争力与
2025-07-07 01:23:20
3265
11

原创 《Agentic AI 实战》第7章 DeepResearcher:基于MCP和browser-use实现深度研究Agent
DeepResearcher:基于MCP与浏览器自动化的深度研究Agent DeepResearcher是一个结合MCP(Model Context Protocol)和browser-use技术的智能研究Agent系统,实现了网络搜索、学术论文分析、网页内容提取与结构化报告生成的全流程自动化。系统采用分布式微服务架构,包含研究服务器、客户端服务器、LangGraph工作流和Streamlit前端等核心组件。 技术亮点包括: 通过MCP协议标准化连接LLM与外部工具 使用browser-use技术进行深度网
2025-06-23 23:10:15
1033

原创 程序员职业生涯系列:关于技术能力的思考与总结
引子儒、释(佛)、道三家思想:释(佛家):处理好人与心的关系,我们要战胜自己;儒(儒家):处理好人与人的关系,我们要团结好他人;道(道家):处理好人与自然的关系,我们应该顺势而为。明人陆绍珩《醉古堂剑扫》自叙有云:一愿识尽人间好人,二愿读尽世间好书,三愿看尽世间好山水。或曰:静则安能,但身到处,莫放过耳。旨哉言乎!余性懒,逢世一切炎热争逐之场,了不关情。惟是高山流水,任意所如,遇翠丛紫莽,竹林芳径......
2022-08-29 10:00:40
133343
241
原创 创新突破点!提示工程架构师找到AI提示系统用户行为预测创新突破点
(图1:AI提示系统用户行为预测框架示意图)在人工智能迅猛发展的今天,提示工程(Prompt Engineering)已从边缘技术演变为核心竞争力。随着GPT-4、Claude 3、Gemini等大语言模型(LLMs)的普及,人类与AI的交互方式正在发生根本性变革——从传统的编程控制转向自然语言引导。这种转变催生了一个关键问题:我们如何准确预测用户与AI系统交互时的行为模式,从而设计出更智能、更符合人类需求的提示系统?作为一名拥有15年软件架构经验,且专注于AI系统设计的技术专家,我见证了提示工程从"试错艺
2025-08-25 12:21:58
229
原创 数据编排在智能交通大数据中的应用
想象你是一座超级城市的交通局长,每天面对的"数据洪流"比早晚高峰的车流还要汹涌:10万个路口的摄像头每秒钟产生GB级视频、500万辆车的GPS轨迹实时更新、8000个交通传感器不断发送信号……这些数据如果杂乱无章地涌向系统,就像所有车辆同时挤上同一条马路——系统崩溃只是时间问题。数据编排就是解决这个问题的"交通指挥系统":它决定哪些数据先走(实时视频)、哪些数据可以缓行(历史统计数据)、哪些数据需要"并道"处理(多源融合)、哪些数据该"绕行"(异常数据过滤)。用通俗语言解释"数据编排"的核心概念和工作原理。
2025-08-25 10:45:09
265
原创 《解锁智能采购AI决策系统架构的优化技巧:AI应用架构师经验》
问题:采购系统存在明显峰谷(如工作日9-11点需求提交高峰,QPS达200;夜间QPS仅5),固定资源配置导致“高峰不够用,低峰浪费”。优化思路Kubernetes HPA(Horizontal Pod Autoscaler):基于指标自动调整Pod数量;自定义指标:不仅依赖CPU/内存,更关注业务指标(如请求队列长度、推理延迟)。实施步骤部署Metrics Server部署Prometheus Adapter。
2025-08-25 09:33:23
184
原创 虚拟画展AI系统:架构师的高可用架构设计
高可用不是"设计出来的",而是"迭代出来的"——没有完美的架构,只有不断适应需求的架构。从最小可用系统开始,不断监控、优化、演练,你就能搭建一个"抗造"的虚拟画展AI系统。下一次,当你看到虚拟画展中"万人同时在线,画作秒加载,AI互动流畅"的场景,你会知道:这背后是架构师的"韧性设计",是每一层的"冗余与分流",是每一行代码的"容错与恢复"。技术的价值,从来都是让美好更持久。(注:文中工具仅为示例,实际项目中可根据需求选择。)# 虚拟画展AI系统:架构师的高可用架构设计。
2025-08-25 02:38:49
212
原创 探索大数据领域数据产品的创新之路
在这个"数据爆炸"的时代,我们每天产生的数据量相当于过去几个世纪的总和——从你刷短视频的停留时间,到外卖平台的订单记录,再到工厂里传感器的实时监测数据。但就像金矿需要开采和提炼才能变成黄金,原始数据本身并不能直接创造价值。数据产品就是将"数据金矿"转化为"黄金"的工具:它通过采集、处理、分析数据,最终以直观的形式(如APP、仪表盘、推荐列表)解决用户的实际问题。本文的目的,就是带你一步步探索数据产品的创新之路:从理解"什么是数据产品",到掌握"如何创新设计数据产品",再到"如何落地并持续优化"。
2025-08-25 01:02:52
260
原创 基于数据湖的A_B测试平台架构设计
数据碎片化挑战多源异构数据分散在不同系统中,难以进行统一分析客户旅程跨多个触点(网站、APP、小程序、线下),数据割裂部门间数据壁垒导致"实验孤岛",无法进行全链路分析实验管理挑战缺乏统一的实验规划和资源分配机制实验设计不规范导致结果可信度低实验元数据分散,难以追踪实验历史和结果跨团队协作效率低,实验资源竞争和冲突技术架构挑战数据处理延迟高,影响实验反馈速度大规模并发实验导致资源消耗激增实验流量分配不准确,造成实验污染系统扩展性不足,难以支持海量实验和数据分析能力挑战。
2025-08-24 23:34:42
293
原创 数据中台建设指南:从0到1构建企业级大数据平台
数据生产者与消费者的矛盾生产者:关注技术实现、性能优化、标准化消费者:关注业务价值、使用便捷性、响应速度中台价值:构建专业化分工协作机制,实现"生产-消费"高效对接数据统一性与多样性的矛盾统一性需求:企业级数据标准、一致的指标定义多样性需求:各业务场景差异化数据需求中台价值:通过"共性抽取+个性定制"平衡统一与灵活短期需求与长期架构的矛盾短期:快速满足业务部门即时需求长期:构建可持续扩展的数据架构中台价值:通过平台化抽象实现"快速响应"与"长期演进"的协调。
2025-08-24 21:47:17
201
原创 大数据架构中的实时数仓:从传统ETL到流式处理的转变
在这个"秒级决策"的时代,企业需要实时掌握业务动态:电商平台要实时知道哪个商品正在爆单,金融机构要实时识别欺诈交易,物流系统要实时追踪包裹位置。但传统数据仓库(比如基于Hadoop的批处理数仓)通常是T+1(第二天才能看到前一天数据)甚至T+7的更新频率,就像"用老地图导航新道路",根本跟不上业务变化。解释为什么传统ETL架构会被实时数仓取代用"小学生能懂"的语言讲清实时数仓的核心原理手把手教你用Flink+Kafka搭建一个简单的实时数仓案例分析实时数仓的应用场景和未来挑战。
2025-08-24 19:49:44
91
原创 万字长文|AI提示设计2025趋势白皮书:提示工程架构师必藏干货
状态0:初始状态(学生提出问题,比如“怎么解2x+3=7?”);状态1:引导分析(提示学生“先把常数项移到右边”);状态2:检查错误(如果学生回答“x=5”,指出错误“移项时符号要变”);状态3:总结方法(讲解“一元一次方程的解题步骤”)。
2025-08-24 18:27:47
449
原创 秘籍在此!提示工程架构师提示系统设计与实施技巧
提示系统(Prompt System)是指为实现特定目标,通过系统化设计的提示工程方案,整合提示模板、上下文管理、交互逻辑和优化机制,使AI模型稳定输出预期结果的完整解决方案。维度传统提示词提示系统目标解决单一问题支撑复杂任务全流程范围单次输入输出包含交互、反馈、迭代全周期结构零散、独立模块化、层次化、可复用设计视角关注"AI如何理解"关注"系统如何可靠运行"复杂度主要依赖语言表达技巧涉及工程设计、用户体验、风控等必须明确告诉AI(和用户)“你不能做什么”。
2025-08-24 17:11:05
416
原创 AI应用架构师在智能标注平台开发中的关键作用
在人工智能飞速发展的今天,"数据是燃料,模型是引擎"已成为行业共识。然而,高质量标注数据的获取一直是AI开发流程中的关键瓶颈。(纯人工标注速度慢,日均处理量有限)、(专业领域标注单价可达数百元/千条)、(人工主观偏差导致标注一致性差)。随着多模态数据(文本、图像、音频、视频)的普及和模型规模增长,对标注数据的需求呈指数级上升,传统方式已无法满足AI工业化生产的需求。
2025-08-24 15:23:38
595
原创 独立开发者借助Open Collective开源创富的团队协作
开源协作与创富不是"技术问题",而是"组织问题"。突破个人精力限制:借助协作团队完成更多工作构建可持续收入:从"用爱发电"到"商业可持续"实现自我价值:从"写代码"到"创造影响"的升华关键不是工具本身,而是思维转变——从"我能做什么"到"我们能一起做什么"。
2025-08-24 14:07:02
332
原创 文化适应性:AI提示设计中最容易被忽视的关键因素
AI提示工程(Prompt Engineering)已成为释放AI模型潜能的核心技能。一个精心设计的提示词能够引导AI生成更准确、更有用、更符合预期的输出。然而,在当前的提示词设计实践中,技术层面的优化(如清晰度、指令性、上下文构建)往往占据了大部分注意力,而文化适应性(Cultural Adaptability)这一关键维度却常常被边缘化,甚至完全被忽略。文化,作为一个社会群体共享的价值观、信仰、规范、行为模式和沟通方式的总和,深刻影响着人们的认知、期望和交互习惯。
2025-08-24 12:45:05
139
原创 大数据领域分布式存储的分布式文件系统介绍
本分析全面探讨了分布式文件系统(DFS)作为大数据技术栈核心组件的理论基础、架构设计与实践应用。通过从第一性原理解构分布式存储挑战,系统阐述了DFS如何解决传统单机文件系统在容量、可靠性和性能方面的根本限制。文章建立了DFS技术评估框架,深入分析了HDFS、GFS、Ceph等主流实现的架构范式与技术权衡,并提供了面向不同应用场景的选型方法论。特别关注了一致性模型、容错机制、数据分布策略等核心技术难点的理论基础与工程实现,为分布式存储系统的设计、部署与优化提供了系统化视角。数据一致性。
2025-08-24 11:19:14
254
原创 大数据建模中的数据货币化:将数据转化为商业价值
在数字经济时代,数据已成为企业的“新石油”——但未经加工的“原油”(原始数据)无法直接创造价值。大数据建模是将数据转化为“商业黄金”的核心工具:它像一把“炼金术钥匙”,能从海量数据中提炼出用户洞察、预测趋势、优化流程,最终转化为企业的收入增长、成本降低或竞争力提升。本文将从商业场景出发,拆解数据货币化的完整链路:从“识别数据资产”到“建模落地”,再到“商业价值实现”。通过生动比喻(如“厨师做饭”类比建模流程)、真实案例(零售、制造、金融等行业)、代码示例(Python实现用户分群、流失预测)和可视化图表。
2025-08-24 10:11:40
264
原创 Agentic AI提示工程:多任务处理能力的7大核心技术
import osload_dotenv() # 加载环境变量(含OPENAI_API_KEY)# 定义任务解构提示模板【角色】你是一位资深项目管理专家,擅长拆解复杂任务。【目标】帮我拆解目标:"{user_goal}"【资源约束】{resource_constraints}【要求】1. 输出格式:├─ 主任务1:[主任务名称]│ ├─ 子任务1.1:[动词+对象+完成标准](依赖:[前置任务ID,若无则写无])
2025-08-24 08:54:54
273
原创 数据科学如何优化大数据领域的供应链管理
在全球化市场与复杂供应网络背景下,数据科学已成为供应链管理的变革性力量。本文系统分析数据科学如何通过整合多源异构大数据,应用高级分析技术实现供应链全流程的智能优化。从需求预测到库存管理,从物流优化到风险管理,数据科学方法正在重构供应链决策范式。我们提出了"数据驱动供应链智能"(Data-Driven Supply Chain Intelligence, DDSCI)框架,该框架整合了分布式计算架构、多模态数据融合、预测建模与优化算法,形成端到端的智能决策系统。
2025-08-24 02:17:13
278
原创 大数据领域数据复制的监控与审计机制
在数据驱动的时代,数据复制已成为确保高可用性、灾难恢复和全球数据访问的基石。然而,如同城市交通系统需要交通监控中心一样,复杂的数据复制拓扑也亟需强大的监控与审计机制来保障其可靠性、一致性和安全性。本文将深入探讨大数据环境下数据复制的监控与审计挑战,解析核心技术原理,并提供构建企业级监控审计系统的实用指南。通过生动的类比、详实的代码示例和真实案例分析,我们将展示如何建立一个全面的数据复制"监控-审计-告警-优化"闭环体系,确保您的数据复制基础设施既高效运行又安全合规。
2025-08-24 00:48:59
767
原创 数据驱动决策的9个工具,总有一款适合你!
提到数据工具,多数人的第一反应是Excel。作为1985年诞生的“古董级”工具,它至今仍是全球80%企业的“数据起点”——原因很简单:零门槛、功能全、兼容性强。Google Sheets则是Excel的“云协作版”,支持多人实时编辑,适合远程团队。核心定位:数据收集、清洗、基础分析、轻量可视化,是个人和小型团队的“入门首选”。如果你厌倦了Excel图表的“丑”和“静态”,Tableau会让你惊艳——它是全球最流行的可视化BI工具,以“拖放式操作”和“交互式仪表盘”著称。
2025-08-23 23:32:15
766
原创 《Power BI在大数据行业的应用全景,一文尽览》
它以“低代码、高扩展性”为核心,整合了数据获取、清洗、建模、可视化、高级分析与协作发布能力,支持对接Hadoop、Spark、云数据湖等大数据平台,同时提供DAX高级计算、AI驱动分析、实时数据流处理等功能。企业数据分散在Excel、SQL Server、Hadoop HDFS、云数据湖(如AWS S3)、IoT设备等数十种数据源中,格式从结构化(数据库表)到非结构化(日志、图片)不等。:移动端应用,支持在手机/平板上查看报表、接收数据预警,满足“移动办公+实时监控”需求(如零售店长实时查看门店销售数据)
2025-08-23 20:18:07
551
原创 提示设计模型构建大揭秘,提示工程架构师带你飞
提示工程(Prompt Engineering):优化输入提示以引导AI模型产生期望输出的实践,是连接人类意图与AI能力的桥梁。提示设计模型(Prompt Design Model):将提示工程系统化、结构化的框架,包含目标定义、元素组件、交互逻辑、优化机制等模块,能稳定复现高质量AI输出。提示元素(Prompt Elements):构成提示设计模型的基础组件,包括指令(Instruction)、上下文(Context)、示例(Examples)、约束(Constraints)、反馈(Feedback)等。
2025-08-23 18:56:11
517
原创 如何利用Power BI挖掘大数据中的商业机会
大数据的价值不在于“大”,而在于“洞察”。企业面临的核心挑战不是“如何收集数据”,而是“如何从数据中挖掘出能带来实际收益的商业机会”。未被满足的客户需求(如某类产品在特定区域的潜在需求激增);低效的运营环节(如供应链中某环节的库存周转率低于行业平均水平30%);隐藏的风险点(如信用卡欺诈交易的异常模式);新兴的市场趋势(如某年龄段消费者对环保产品的偏好度年增长25%)。Power BI作为一款集成了数据连接、建模、可视化、分析和协作功能的一站式BI工具,其核心价值在于降低数据洞察的门槛。
2025-08-23 17:44:25
657
原创 独立开发者开源创富:收入模型的创新思路
本文将带你跳出“开源=免费”的思维定式,系统拆解独立开发者开源创富的核心逻辑,详解10个经过验证的创新收入模型。每个模型都会结合真实案例(从月入数千到年入千万的项目),告诉你“谁适合用”“怎么落地”“避坑指南”,帮你找到适合自己项目的商业化路径。将项目的“核心功能”开源(如基础代码、本地部署版),同时提供“托管版SaaS服务”,包含高级功能(如多用户协作、自动化运维、数据备份),用户可免费使用开源版,付费使用SaaS版。定制开发(按需求修改代码);技术咨询(1对1解答问题);
2025-08-23 16:35:46
567
原创 大数据浪潮下,数据中台的崛起与挑战
数据中台是一套可持续"让企业的数据用起来"的机制,是一种战略选择和组织能力,表现为"台"的形态。它通过集中构建一套覆盖数据采集、整合、治理、存储、分析、服务的技术架构和组织流程,实现数据资产化和业务赋能。数据仓库(Data Warehouse):面向分析,将不同数据源的数据结构化后存储,支持报表和决策分析数据湖(Data Lake):存储原始、未经处理的所有数据,保留数据原貌数据集市(Data Mart):面向特定业务部门的数据集合,是数据仓库的子集业务中台。
2025-08-23 14:50:31
721
原创 速知!AI提示工程架构师在科学研究的创新应用秘籍
科学提示工程是提示工程的一个专业化分支,专注于设计和优化提示以解决科学研究中的特定问题。领域知识深度整合:必须精确嵌入特定学科的理论框架、实验方法和专业术语科学推理模式适配:需模拟科学发现的思维过程(观察→假设→实验→验证→理论)可验证性与可复现性:提示设计必须支持结果的独立验证和实验过程的精确复现科学提示工程的黄金法则理论一致性:提示必须与该领域已确立的理论框架保持一致实验严谨性:提示引导的推理过程需符合科学实验设计原则不确定性量化:必须明确提示AI标识结论的确定性程度和假设条件。
2025-08-23 13:13:20
812
原创 大数据趋势预测:开放数据领域的未来展望
想象一下,你走进一家图书馆,却发现每本书都被锁在单独的柜子里,每一页都需要单独申请才能阅读。这听起来荒谬绝伦,但这正是我们数据世界的现状——一个充满"数据封建制"的时代,少数实体控制着大部分有价值的信息资源。开放数据运动正在改变这一切。数据已成为21世纪最有价值的资源,其重要性堪比工业革命时期的煤炭和石油。它是一种非竞争性资源。当你使用数据时,我也可以同时使用它,甚至我们的使用可能会增加而非减少数据的总体价值。这一特性使开放数据成为一种革命性力量,有潜力重塑我们的经济、政府和社会。
2025-08-23 11:25:56
767
原创 大数据领域数据架构的智能传媒应用
本文将以"智能传媒业务需求"为起点,系统讲解大数据架构在传媒领域的设计理念、核心组件、技术选型与落地实践。我们将从数据采集、存储、处理、分析到智能应用,拆解完整数据链路,并结合真实案例(如短视频推荐架构、舆情监测系统),说明如何让大数据架构真正赋能内容生产、分发、运营全流程。数据应用层需将分析层产出的数据/模型能力,以低门槛、高可靠、低延迟API服务:供推荐系统、内容审核系统调用的实时接口(如用户兴趣标签API、内容质量评分API);可视化平台。
2025-08-23 10:10:23
1026
原创 大厂提示工程架构师在职培训体系的4个知识图谱设计,帮你构建体系
提示工程架构师(Prompt Engineering Architect)是在人工智能与认知科学交叉领域,专注于设计、开发和优化基于大型语言模型(LLM)的提示工程系统的高级技术专家。这一角色超越了传统的提示工程师职责范围,需要具备系统思维、架构设计能力和跨学科知识整合能力。核心价值主张技术翻译:将业务需求精确转化为技术规范,将AI能力转化为业务价值系统优化:设计高效、可靠、安全的提示工程系统架构,最大化LLM性能组织赋能:建立可持续的提示工程能力体系,推动AI技术在组织内的规模化应用。
2025-08-23 09:02:48
963
原创 资深AI应用架构师:构建业务需求到技术架构自动化映射智能体的资源清单
在AI应用架构设计领域,"业务需求到技术架构的映射"是一个典型的知识密集型、经验驱动型决策过程。效率瓶颈:复杂AI项目的需求-架构映射平均需要2-4周,且需求变更时响应滞后(据McKinsey调研,需求变更后架构调整的平均耗时是初始设计的60%)。一致性缺失:不同架构师对同一需求可能给出差异显著的方案,缺乏标准化映射逻辑(某互联网巨头内部实验显示,5位资深架构师对同一电商AI推荐系统需求的架构方案重合度仅为43%)。隐性知识流失。
2025-08-23 02:18:36
618
原创 零售大数据降维:商品特征降维分析,提升库存周转率15%
零售业是数据密集型行业。每一件商品都伴随着海量特征:基础属性(类别、品牌、规格、价格)、销售表现(销量、销售额、毛利率、周转率)、供应链属性(采购周期、供应商、成本)、营销属性(促销频率、折扣力度、广告投入)、甚至外部环境属性(季节、天气、节假日、区域经济指标)。据统计,一个中等规模的连锁零售企业,其商品特征维度往往能达到数百甚至上千。“维度灾难” (Curse of Dimensionality): 高维空间中数据点变得稀疏,传统的数据分析模型难以捕捉数据间的真实规律,预测效果大打折扣。
2025-08-23 01:02:00
1001
原创 从零开始搭建企业级大数据OLAP平台
OLAP是一种专为支持复杂分析查询而设计的技术,它允许用户从多个维度对大量数据进行快速、灵活的查询和分析。OLAP的核心价值在于将复杂的数据关系转化为直观的业务洞察,使非技术人员也能轻松探索数据。想象一家电商企业的销售数据,如果只看总销售额这个单一指标,你只能知道"卖了多少"。但通过OLAP分析,你可以同时从时间(时维)、产品(产品维)、地区(地区维)、客户(客户维)等多个维度分析:“华东地区25-35岁女性客户在第四季度购买化妆品类产品的客单价变化趋势”。这种多维度交叉分析能力正是OLAP的核心优势。
2025-08-22 23:40:02
803
原创 HBase入门指南:从零开始掌握大数据存储技术
在大数据技术体系中,HBase作为分布式列式存储数据库的典范,为海量数据提供了实时随机访问能力,成为Hadoop生态系统中不可或缺的关键组件。本文将带领读者从零开始,系统性掌握HBase技术的核心原理与实践技能。从基础概念到架构设计,从安装配置到性能优化,从API开发到集群管理,构建一个全面而深入的知识体系。无论你是大数据领域的初学者,还是寻求深化分布式存储技术理解的开发者,本文都将为你提供清晰的学习路径和专业洞见,助力你真正理解并高效应用这一强大的大数据存储解决方案。数据规模挑战。
2025-08-22 22:07:59
646
原创 提示工程架构师软技能:沟通、协作、创新,塑造AI应用未来的隐性能力
在人工智能技术迅猛发展的今天,一个新兴职业正在崛起并逐渐成为AI产品成功的关键因素——。不同于传统的软件架构师或数据科学家,提示工程架构师是连接人类意图与AI能力的桥梁,是驯服强大语言模型并将其转化为实际业务价值的关键角色。。这就是提示工程架构师的核心价值所在——不仅理解AI模型的技术边界,更掌握引导AI系统实现最佳性能的艺术与科学。本博客将深入探讨提示工程架构师不可或缺的三项核心软技能——,并揭示这些"隐性能力"如何决定AI应用的成败,塑造企业AI转型的未来。
2025-08-22 20:56:22
715
原创 大数据标注工具对比:哪款工具最适合你的项目?
数据标注作为机器学习 pipeline 中的关键环节,直接决定了模型性能的上限。本文提供了一份全面的技术分析,涵盖数据标注工具的理论基础、架构设计、实现机制和实际应用。通过深入剖析 18 款主流标注工具的技术特性,建立了包含 7 个维度、23 个关键指标的量化评估框架。文中详细阐述了从传统人工标注到智能标注的演进路径,揭示了半监督学习、主动学习与预训练模型在标注流程中的融合机制。
2025-08-22 18:58:43
561
原创 智能资产管理系统架构设计实战:灾备演练与故障恢复流程设计
在金融科技迅猛发展的今天,智能资产管理系统已成为连接投资者与金融市场的核心枢纽。这些系统不仅需要处理海量的金融数据、执行复杂的投资算法,更重要的是必须保证7×24小时不间断运行——任何服务中断都可能导致巨大的经济损失和不可挽回的声誉损害。问题陈述:智能资产管理系统面临着多重威胁,包括硬件故障、软件漏洞、网络攻击、自然灾害,甚至是人为操作失误。传统的灾备方案往往存在成本高昂、配置复杂、演练不足和恢复效率低下等问题,难以满足金融级系统对高可用性和数据安全性的严苛要求。核心方案。
2025-08-22 17:42:06
1002
原创 【Clickhouse 实战】修复下面的 Clickhouse SQL: 当 t 返回空的时候, 使得 仍然能够返回 0,而不是 null
摘要:本文提供了三种修复Clickhouse SQL的方案,确保当子查询返回空时仍能返回0而非null。方案1使用coalesce()替代ifNull();方案2通过UNION ALL确保子查询至少返回一行;方案3使用count()作为保护条件。其中方案1的coalesce(avg(t.daily_user_count), 0)是最简洁直接的解决方案。当主查询的avg()函数接收空输入时,这些方法能有效处理NULL值情况。(149字)
2025-08-22 17:24:06
23
《Kotlin项目实战开发》第3章+类型系统与可空类型
2017-09-30
ClickHouse 高性能、可扩展和低成本的OLAP数据库 陈光剑 20230912
2023-09-14
Will AI Fix Work? 工作节奏超过了我们的跟上能力 人工智能有望创造一种全新的工作方式
2023-05-17
THE AI INDEX REPORT 人工智能指数报告 Measuring trends in Artificial Inte
2023-04-06
An introduction to functional programming through lambda calculus.PDF.zip
2019-09-22
Principles of programming languages by Gilles Dowek (auth.) (z-lib.org).pdf
2021-04-28
Kotlin Coroutines by Tutorials (1st Edition)
2021-04-28
A Brief History of Artificial Intelligence
2021-04-28
2024 年可以实现 AGI 吗?
2024-01-02
TA创建的收藏夹 TA关注的收藏夹
TA关注的人