大数据智能洞察、知识图谱、数据可视化技术

本文探讨了智能技术的五大方向,包括知识工程、信息检索、深度学习、视觉计算和营销智能。重点介绍了知识图谱在公安领域的应用,如公安知识图谱平台和智慧缉毒管控平台,通过数据治理、研判工具和挖掘模型提升执法效率。此外,还提到了大规模中文知识图谱的开源下载信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

智能五大技术方向

知识工程

面向垂直行业,结合专家知识、多源异构的碎片化知识和组织智能,引领从大数据分析到大知识工程进而大智慧系统的研发和落地应用。构建行业知识图谱,实现智能推理与知识服务,推进多机多人多任务的人机协同,开发新一代知识工程的技术体系和系统平台,服务搜索、推荐、规划、对话机器人等领域的情景感知和人机协同。

信息检索

围绕自然语言处理、自然语言理解、知识图谱工具、智能问答、智能检索等领域进行技术研究与应用。建设基于主动学习与迁移学习的自然语言处理平台,重点投入自然语言理解、非结构化数据的实体与关系提取,半自动化及自动化知识抽取等方向,构建知识图谱工具,提供智能问答、智能检索等上层应用。

深度学习

专注于以深度学习为核心的技术研发,针对垂直行业,支撑集团的智能餐饮、智能零售、供应链物流、智能营销、智能工业等业务领域。分为三个小组:
计算机视觉组:检测分割、目标跟踪、图像分类、动作识别、场景识别、身份识别等算法模型与工具;
语音技术组:语音识别、语音合成、声纹识别、音频搜索; 高性能计算组:深度学习算法模型在单机(CPU/GPU/FPGA/ASIC)或集群上的并行化、高性能实现与移植,为计算机视觉与语音技术降低算力成本提供底层支持。

视觉计算

将聚焦AI+新服务、AI+制造业、服务机器人三大场景,基于摄像头采集的人员、物体、环境数据,重点围绕人员检测跟踪、人员分类、着装识别、人体姿态估计、动作识别与预测,物品异常瑕疵检测与识别,机器人视觉定位等核心技术,开展线下数据实体化的研发与应用。

营销智能

聚焦智能推理推荐、人机交互优化、消费者认知与决策过程、意图预判与趋势

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值