探索无监督学习的奥秘——EM算法和其他算法原理

本文介绍了EM算法的基本思想、在自然语言处理中的应用,包括词性标注、命名实体识别、情感分析、文本聚类和主题模型等,并讨论了其在计算机视觉、推荐系统和生物信息学中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

最近几年无监督机器学习领域的研究非常火爆,这其中包括聚类、生成模型、密度估计等多种方法。而最为经典的无监督学习方法之一是Expectation-Maximization(EM)算法。在实际应用中,EM算法是一种快速且有效的推理算法,被广泛用于很多领域,如混合高斯模型、语音识别、图像分割、神经网络参数初始化等方面。因此,了解一下EM算法的原理及其工作方式对于理解和运用这一方法十分重要。同时,掌握相关算法的细节还可以帮助我们更好地理解应用场景并进行改进。本文将对EM算法及其衍生算法在自然语言处理、文本聚类、主题模型和推荐系统等多个领域的发展状况做一个简单的介绍,并尝试从应用角度讨论一些关键问题。最后,本文也会给出一些已有的开源实现或论文给大家参考。

一、EM算法概述

EM算法(Expectation-Maximization algorithm)是20世纪统计学的一个重要分支,是一种迭代算法,用来寻找极值点。其基本思想是:首先,假设模型参数服从先验分布;然后,利用该模型进行E步计算期望;最后,利用极大似然估计或梯度下降法优化参数,使得模型参数逼近真实参数。由于计算量小,收敛速度快,所以EM算法在很多实际问题上都得到了广泛的应用。例如,混合高斯模型就是通过EM算法估计混合成分个数以及相应的权重、均值和协方差矩阵。

(1)基本公式

EM算法的算法流程可以总结如下:

  1. 初始化:根据已知的样本点集,确定模型的参数,即可以直接使用样本数据进行初始化;也可以选择某些先验知识来作为初始化。
  2. E步:
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值