作者:禅与计算机程序设计艺术
1.简介
2021年机器学习领域中,“模型可解释性”也逐渐成为热门话题。作为重要的一环,它可以帮助机器学习模型更好地用于其他业务应用、客户服务、科研等场景,提升企业整体竞争力。本文将详细介绍模型可解释性相关知识,并基于scikit-learn库进行相关示例展示。
2.模型可解释性相关知识
2.1 为什么要做模型可解释性
模型可解释性是关于模型内部工作机制、预测结果的重要属性。它有助于不同的人理解模型工作过程、掌握其工作规律,提高模型效果。它对以下场景也很重要:
- 监督学习场景: 由于数据不容易获取,无法像监督学习那样对数据的每个维度进行验证;模型得出的结论是否正确并不能由人的判断完全确认。
- 非监督学习场景: 聚类、分类、异常检测等结果很难被完全理解、诊断,需要模型的输出有人类理解的程度。
- 强化学习场景: 强化学习中的状态、动作、奖励等概念需要通过可视化呈现才能让其他人理解。
2.2 可解释性相关术语
2.2.1 LIME(Local Interpretable Model-agnostic Explanations)
Local Interpretable Model-agnostic Explanations (LIME) 方法是一种模型白盒解释的方法,它通过局部取样的方式来对模型进行解释,使得解