作者:禅与计算机程序设计艺术
1.简介
1.1 背景介绍
随着深度学习(Deep Learning)的火爆,越来越多的人开始关注并尝试使用机器学习技术来解决复杂的问题。而近年来,TensorFlow (TF) 项目开源了,它是一个高效、灵活且易于使用的开源机器学习框架,可以用于构建、训练和部署各种机器学习模型。在本系列教程中,我们将带领读者从基础知识到实践操作,全面掌握TF2.0的特性和使用方法,帮助读者更好地理解机器学习和深度学习。
1.2 本文概要
本文将向读者介绍TensorFlow2.0的相关介绍、安装配置、数据预处理、模型搭建与训练等基础知识。包括以下内容:
- 1.2.1 TensorFlow2.0简介
- 1.2.2 安装配置
- Python环境配置
- TF环境配置
- GPU支持
- MKL加速库安装
- 1.2.3 数据预处理
- 导入数据集
- 数据划分训练集、验证集、测试集
- 对数据进行预处理
- 使用TFDataset API读取数据集
- 1.2.4 模型搭建与训练
- 创建一个简单模型<