作者:禅与计算机程序设计艺术
1.背景介绍
计算机视觉(Computer Vision)是指能够将输入的图像或者视频数据转换成为信息或知识的过程。根据视觉感知的原理,计算机视觉通常分成图像处理、特征提取和机器学习三个主要任务。在实际应用中,计算机视觉应用于图形图像、自然环境图像、摄像头监控等领域。目前,基于深度学习的人工智能技术大幅提升了计算机视觉能力。本文通过对计算机视觉相关术语的介绍,阐述其基本概念、发展历史及作用,并简要介绍其核心算法以及所涉及到的数学模型。另外,本文还会介绍一些计算机视觉常用技术的原理,如单应性变换、光流法、立体匹配、多目标跟踪、空间计测、立体相机、相机标定、图像融合等。在文章最后,我们还会给出该系列内容后续研究方向,以及未来的技术革命方向。
2.核心概念与联系
2.1 图像
图像就是从数字设备(如摄像头、扫描仪、照相机等)记录到存储介质上的二维、三维或多维信号。不同类型的图像包括静态图像(如数字照片、光学照片、X光线图)、动态图像(如电影、电视节目、虚拟现实)和交互式图像(如手写体、扫描件)。
2.2 颜色模型
颜色模型用于表示图像中物体或场景的颜色。它可以分类为按位彩色模型、RGB颜色模型、HSV颜色模型、CMYK颜色模型、YUV颜色模型等。每种颜色模型都定义了颜色的表示方式、表示范围及如何组合颜色。
2.2.1 RGB颜色模型
RGB颜色模型又称为加权色彩模型,由红、绿、蓝三个原色混合而成,色调(Hue),饱和度(Saturation)和亮度(V