Python 人工智能实战:自动驾驶

本文介绍了自动驾驶技术的发展背景,关键技术和算法,包括机器学习、深度学习、强化学习、计算机视觉等。深度学习在图像识别、自然语言处理等方面的应用,强化学习的环境交互学习以及在自动驾驶中的应用。此外,文章还探讨了模型压缩与量化、有限状态机、决策树、目标检测技术等。强调了数据集和标注工具在训练模型中的重要性,并举例说明了如何实现这些技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.背景介绍

1.人工智能简介

1.1 引言

人工智能(Artificial Intelligence,AI)是指通过机器学习、模式识别、数据挖掘等技术让计算机“思考”和“学习”,从而实现智能化。这一领域在近几年取得了极大的进步,逐渐成为当今最热门的话题。

2017 年底,谷歌推出 AlphaGo,它是一个基于强化学习(Reinforcement Learning,RL)算法的围棋游戏 AI。2019 年,DeepMind 提出的星际争霸游戏 AI “AlphaStar” 也突破了人类级别的表现。

2020 年初,百度飞桨团队基于 PPO (Proximal Policy Optimization) 算法开发出了无人驾驶自动驾驶系统(Automatic Driving System)。随着无人驾驶技术的迅猛发展,其对人的影响正在逐渐放缓。

自动驾驶领域的发展离不开前沿的技术,比如深度学习、强化学习、计算机视觉、激光雷达等。目前市面上已经有很多基于深度学习的自动驾驶算法和系统,如 PixelWise-CNN、CAV、LaneATT、Waymo Autopilot。这些算法利用先进的深度学习技术进行路线规划、车辆控制和决策,并获得了很好的效果。

自动驾驶的主要难点有:环境复杂、高速路况复杂、自适应巡航、多目标优化等。因此,如何提升自动驾驶的准确率、鲁棒性、可靠性和效率也是自动驾驶相关研究的一个重要方向。

1.2 发展阶段及关键技术

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值