1.背景介绍
人工智能(Artificial Intelligence,AI)是一门研究如何让机器具有智能行为和人类类似的思维能力的科学。AI的目标是让机器能够理解自然语言、进行推理、学习、理解环境、进行决策等。AI的发展历程可以分为以下几个阶段:
1.1 早期阶段(1956年至1980年):这个阶段的AI研究主要关注于自然语言处理、知识表示和推理。这个阶段的AI研究主要是基于规则的方法,即通过编写一系列的规则来描述问题和解决方案。这个阶段的AI研究主要是基于规则的方法,即通过编写一系列的规则来描述问题和解决方案。
1.2 第二次AI大爆发(2012年至2017年):这个阶段的AI研究主要关注于深度学习、神经网络和大数据处理。这个阶段的AI研究主要是基于数据驱动的方法,即通过大量的数据和计算资源来训练模型。这个阶段的AI研究主要是基于数据驱动的方法,即通过大量的数据和计算资源来训练模型。
1.3 第三次AI大爆发(2017年至现在):这个阶段的AI研究主要关注于自然语言处理、计算机视觉和机器人技术。这个阶段的AI研究主要是基于深度学习和神经网络的方法,即通过大量的数据和计算资源来训练模型。这个阶段的AI研究主要是基于深度学习和神经网络的方法,即通过大量的数据和计算资源来训练模型。
1.2 核心概念与联系
在AI领域,有一些核心概念需要我们了解,包括:
1.2.1 机器学习(Machine Learning):机器学习是一种算法,它可以从数据中学习出模型,从而用于进行预测或决策。机器学习的主要技术有监督学习、无监督学习和半监督学习。
1.2.2 深度学习(Deep L