模型架构选择:从传统NLP到Transformer
关键词:自然语言处理(NLP), 模型架构, 传统NLP, Transformer, RNN, CNN, 预训练模型
文章目录
- 模型架构选择:从传统NLP到Transformer
- 模型架构选择:从传统NLP到Transformer2
1. 背景介绍
1.1 问题的由来
自然语言处理(NLP)是人工智能的重要分支,旨在使计算机能够理解、解释和生成人类语言。随着互联网的发展和数据量的激增,NLP技术在文本分类、机器翻译、情感分析、问答系统等多个领域得到了广泛应用。然而,NLP任务的复杂性和多样性对模型架构提出了巨大挑战。
传统的NLP模型架构,如基于规则的方法、统计模型、词袋模型等,虽然在早期取得了一定的成果,但随着数据规模和任务复杂度的增加,这些方法逐渐暴露出其局限性。为了应对这些挑战,研究人员不断探索新的模型架构,从传统的RNN、CNN,到近年来备受瞩目的Transformer模型,NLP模型架构经历了显著的演进和变革。
1.2 研究现状
目前,Transformer模型已经成为NLP领域的主流架构,几乎所有最先进的NLP模型都基于Transformer进行构建。Transformer通过自注意力机制(Self-Atte