1. 背景介绍
1.1 机器学习的挑战
在机器学习领域,我们的目标是训练出一个能够在未知数据上表现良好的模型。然而,在实际应用中,我们经常会遇到过拟合(overfitting)的问题。过拟合是指模型在训练数据上表现优秀,但在测试数据上表现较差。这是因为模型过于复杂,以至于它学习到了训练数据中的噪声,而非真实的数据分布。为了解决这个问题,我们需要引入正则化技巧来防止过拟合,提高模型的泛化能力。
1.2 正则化的重要性
正则化是一种通过在模型训练过程中引入额外约束来防止过拟合的技术。通过正则化,我们可以限制模型的复杂度,使其在训练数据上的表现略有下降,但在测试数据上的表现得到提升。这样,我们可以获得一个在未知数据上表现良好的模型,从而提高模型的泛化能力。
2. 核心概念与联系
2.1 过拟合与欠拟合
过拟合和欠拟合是机器学习中两个重要的概念。过拟合是指模型在训练数据上表现优秀,但在测试数据上表现较差;欠拟合是指模型在训练数据上表现较差,同时在测试数据上也表现较差。我们的目标是找到一个平衡点,使模型在训练数据和测试数据上都能取得较好的表现。
2.2 正则化与模型复杂度
正则化是一种通过在模型训练过程中引入额外约束来防止过拟合的技术。正则化可以限制模型的复杂度,使其在训练数据上的表现略有下降,但在测试数据上的表现得到提升。这样,我们可以获得一个在未知数据上表现良好的模型,从而提高模型的泛化能力。