Python机器学习实战:使用机器学习进行时间序列分析
1.背景介绍
1.1 时间序列分析概述
时间序列分析是一种研究随时间变化的数据的统计技术。它广泛应用于金融、经济、气象、工业生产等诸多领域,旨在从历史数据中发现模式,预测未来趋势。随着大数据时代的到来,时间序列分析变得越来越重要。
1.2 机器学习在时间序列分析中的作用
传统的时间序列分析方法如ARIMA模型等,需要大量的人工特征工程和领域知识。而机器学习算法能够自动从海量数据中学习特征,捕捉复杂的非线性模式,从而提高预测精度。
1.3 Python机器学习生态
Python凭借其简洁的语法和强大的生态系统,成为数据科学和机器学习领域的主导语言。流行的机器学习库如Scikit-learn、TensorFlow、Keras等,使得构建和部署机器学习模型变得前所未有的简单。
2.核心概念与联系
2.1 监督学习与非监督学习
- 监督学习: 利用带有标签的训练数据,学习映射函数从输入预测输出。常用于回归和分类任务。
- 非监督学习: 仅利用无标签的训练数据,发现其中的模式和结构。常用于聚类和降维任务。
时间序列预测通常被视为一种监督学习问题。