PCA的算法实现:Python代码实战

本文详细介绍了PCA(主成分分析)的基本概念、核心步骤和数学模型,包括数据中心化、协方差矩阵计算、特征值分解、选择主成分和数据投影。通过Python代码实例展示了PCA的实现过程,并探讨了PCA在数据降维、图像压缩和特征提取等领域的应用。同时,推荐了Scikit-learn、NumPy和Matplotlib等实用工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.背景介绍

主成分分析(Principal Component Analysis,PCA)是一种常用的数据分析方法,主要用于高维数据的降维,通过保留数据的主要成分,以达到降低数据维度,简化模型复杂度的效果。

PCA的主要思想是将n维特征映射到k维上(k<n),这k维是全新的正交特征也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征。

PCA的工作就是从原始的空间中顺序地找一组正交的坐标轴,第一个新坐标轴选择是原始数据中方差最大的方向,第二个新坐标轴选取是与第一个坐标轴正交的平面中使得方差最大的,第三个轴是与第1,2个轴正交的平面中方差最大的。依次类推,可以得到n个这样的坐标轴。通过这种方式获得的新的坐标轴,我们发现,大部分方差都包含在前面k个坐标轴中,后面的坐标轴所含的方差几乎为0。于是,我们可以忽略余下的坐标轴,只保留前面k个含有绝大部分方差的坐标轴。事实上,这相当于只保留包含绝大部分方差的维度特征,而忽略包含方差几乎为0的特征维度,实现对数据特征的降维处理。

2.核心概念与联系

PCA的主要步骤如下:

  1. 对原始数据进行中心化处理(即让数据的均值为0);
  2. 计算数据的协方差矩阵;
  3. 对协方差矩阵进行特征值分解;
  4. 取最大的k个特征值对应的特征向量构成的矩阵,这就是我们要找的基;
  5. 将原始数据投影到这组基上。

在这个过程中,我们会遇到一些核心概念,包括协方差、特征值和特征向量。下面,我们将详细介绍这些概念以及它们之间的联系。

2.1 协方差</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值