从零开始大模型开发与微调:选择PyTorch 2.0实战框架
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming / TextGenWebUILLM
从零开始大模型开发与微调:选择PyTorch 2.0实战框架
1. 背景介绍
1.1 问题的由来
随着大规模预训练模型的兴起,诸如BERT、GPT系列以及最近的LLaMA和Moss等模型在自然语言处理任务上的卓越表现引起了广泛关注。然而,这些先进模型往往依赖于大量的参数量和计算资源,使得它们在部署到实际应用时存在成本高、部署复杂等问题。因此,如何高效地利用现有的硬件资源,构建具有竞争力的大模型,并进行有效的微调以适应特定场景的需求,成为了一个重要的研究课题。
1.2 研究现状
当前,许多研究人员都在探索使用轻量化模型、模型剪枝、知识蒸馏等方法来降低模型大小和优化性能,同时保持或提高模型的准确度。此外,社区也在积极寻求更灵活、易于使用的框架来支持模型开发和微调工作流程。PyTorch作为一款广泛使用的深度学习框架,因其动态计算图、简洁的API以及强大的GPU加速能力,在大模型开发与微调方面展现出了显著优势。
1.3 研究意义
本篇文章旨在探讨如何利用PyTorch 2.0这一最新版本的特性,结合现代机器学习理论与实践,从零开始构建一个高效且可扩展的大模型,