从零开始大模型开发与微调:使用卷积对文本分类的补充内容

从零开始大模型开发与微调:使用卷积对文本分类的补充内容

关键词:

  • 大语言模型:大型预训练模型,用于生成或理解自然语言文本。
  • 微调:对预训练模型进行调整,以适应特定任务。
  • 文本分类:根据文本内容将其归类到预先定义的类别中。
  • 卷积神经网络:一种专门用于处理网格状输入(如图像)的神经网络,最近也被应用于文本处理中。

1. 背景介绍

1.1 问题的由来

随着自然语言处理(NLP)任务的日益多样化,文本分类作为其中基础且重要的任务之一,一直是研究的焦点。传统的文本分类方法通常基于词袋模型或者TF-IDF向量化,这些方法虽然直观且易于实现,但在处理长文本时往往受限于特征稀疏性、顺序信息丢失等问题。近年来,基于深度学习的模型,特别是预训练语言模型,因其在大规模无监督任务上的成功,开始被广泛应用于文本分类任务中。

1.2 研究现状

当前的研究趋势是结合预训练语言模型和传统深度学习架构&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值