引言与概述
大模型的定义与分类
大模型(Large-scale Model)是指具有大规模参数和数据的深度学习模型,也被称为巨型模型(Giant Model)或巨型神经网络(Giant Neural Network)。这些模型通过训练海量数据集来学习复杂模式,并在多种任务中表现出优异的性能。大模型主要可以分为以下几类:
- 语言模型:如GPT系列(GPT, GPT-2, GPT-3)和BERT等,主要用于自然语言处理任务,如文本生成、机器翻译和问答系统等。
- 图像模型:如ResNet、VGG和Inception等,主要用于计算机视觉任务,如图像分类、物体检测和图像生成等。
- 多模态模型:如ViT和DALL-E等,能够同时处理文本和图像等多模态数据,用于跨模态任务,如文本图像检索和跨模态生成等。
大模型在商品关联规则挖掘中的潜力
商品关联规则挖掘(Market Basket Analysis,MBA)是一种用于发现数据中隐含关联关系的数据挖掘技术。它通过分析消费者的购买记录,挖掘出不同商品之间的关联性,从而帮助商家制定个性化的营销策略和优化库存管理。
大模型在商品关联规则挖掘中具有以下潜力:
- 高效的数据处理能力:大模型能够处理大规模数据集,从而提高挖掘效率,快速发现潜在的关联规则。
- 丰富的特征提取能力