K8s调度策略:AI应用架构师的节点亲和性与资源配额技巧

K8s调度策略:AI应用架构师的节点亲和性与资源配额技巧

关键词:K8s调度、节点亲和性、资源配额、AI应用架构、GPU调度、拓扑感知、QoS
摘要:AI应用(如大模型训练、推理服务)对资源独占性(GPU/TPU)、拓扑 proximity(低延迟网络)、资源稳定性(避免抢占)的要求远高于普通应用。Kubernetes(K8s)的「节点亲和性」和「资源配额」是解决这些问题的核心工具——前者帮AI Pod找到「最合适的节点」(比如带GPU且同机架的节点),后者给AI团队划定「资源预算」(比如8块GPU专属配额)。本文结合AI场景的真实痛点,用「找酒店」「分预算」的生活类比拆解核心概念,用Python代码模拟调度逻辑,用实战案例讲解如何配置YAML,最终给出AI架构师的8个关键技巧,帮你彻底搞定AI应用的K8s调度。

背景介绍

目的和范围

AI应用的「特殊需求」是K8s默认调度无法覆盖的:

  • 大模型训练需要多块GPU在「同一机架」(避免跨机架网络延迟拖慢梯度同步);
  • 推理服务需要「固定GPU配额」(避免被其他Pod抢占导致响应 latency 飙升);
  • 联邦学习需要Pod分布在「不同区域」(满足数据隐私要求)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值