
CSD
文章平均质量分 94
AI天才研究院
中国程序员光剑,AI天才研究院和光剑读书创始人兼CEO。著有《Kotlin极简教程》《Kotlin从入门到进阶实战》《Spring开发实战》《ClickHouse入门实战与进阶》《MCP开发实战》(待上架)《Agentic AI实战》(待上架)
#AI大模型实战派 #技术不高冷 #生产力革命
Slogan:"用AI重构你的工作流,让每个普通人都能驾驭大模型"。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
如何在大数据领域挖掘出真正的数据价值
在这个“人人谈数据”的时代,企业每年花数百万搭建数据平台、存储PB级数据,却常常陷入“数据囤积”而非“数据利用”的困境:电商平台有千万用户行为数据,却做不出精准推荐;银行有海量交易记录,却难以识别欺诈风险;医院有大量患者病例,却无法辅助疾病诊断。本文的目的,就是帮你跳出“有数据无价值”的陷阱,掌握一套可落地的大数据价值挖掘方法论——从数据的“采集-清洗-分析-建模-应用”全流程,到技术、工具、人才的协同,最终让数据从“数字”变成“决策依据”和“业务增长引擎”。原创 2025-09-01 13:20:13 · 1027 阅读 · 0 评论 -
大数据浪潮下,数据中台的崛起与挑战
数据中台是一套可持续"让企业的数据用起来"的机制,是一种战略选择和组织能力,表现为"台"的形态。它通过集中构建一套覆盖数据采集、整合、治理、存储、分析、服务的技术架构和组织流程,实现数据资产化和业务赋能。数据仓库(Data Warehouse):面向分析,将不同数据源的数据结构化后存储,支持报表和决策分析数据湖(Data Lake):存储原始、未经处理的所有数据,保留数据原貌数据集市(Data Mart):面向特定业务部门的数据集合,是数据仓库的子集业务中台。原创 2025-08-23 14:50:31 · 872 阅读 · 0 评论 -
速知!AI提示工程架构师在科学研究的创新应用秘籍
科学提示工程是提示工程的一个专业化分支,专注于设计和优化提示以解决科学研究中的特定问题。领域知识深度整合:必须精确嵌入特定学科的理论框架、实验方法和专业术语科学推理模式适配:需模拟科学发现的思维过程(观察→假设→实验→验证→理论)可验证性与可复现性:提示设计必须支持结果的独立验证和实验过程的精确复现科学提示工程的黄金法则理论一致性:提示必须与该领域已确立的理论框架保持一致实验严谨性:提示引导的推理过程需符合科学实验设计原则不确定性量化:必须明确提示AI标识结论的确定性程度和假设条件。原创 2025-08-23 13:13:20 · 912 阅读 · 0 评论