数据结构与算法(分治策略)

本文探讨了分治策略在算法设计中的应用,特别是递归算法求解斐波那契数列的效率问题。通过对比递归与递推方法,说明了递归可能导致的重复计算问题,并提供了一种统计子问题个数的程序实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分治策略是算法设计的重要策略之一,该策略的基本思想是把问题进行分解成一些子问题,通过子问题的求解完成对原问题的求解。其关键是分解和合并,好的分解或合并方法才会产生高效的分治算法。
分治策略设计出的算法最常见的就是递归算法。但是如果在分解时,分解出的子问题有很多是重复的,那么这样的分治(递归)算法求解问题的效率就非常低。例如斐波那契数问题,如果采用递归求解,算法效率非常低:O( 2^n )。而如果采用递推求解(动态规划自底向上求解),算法效率非常高:O(n)。
现在请你编写程序,统计计算一个斐波那契数时分解出的各子问题的个数。
斐波那契数的定义如下:
Fib(0)=0
Fib(1)=1
Fib(n)=Fib(n-1)+Fib(n-2)
输入: 一个整数n,即计算Fib(n)
输出:n+1行,即各个子问题的值及该子问题的个数。
例如
输入:

5

输出:

Fib(0)=0,spn=3
Fib(1)=1,spn=5
Fib(2)=1,spn=3
Fib(3)=2,spn=2
Fib(4)=3,spn=1
Fib(5)=5,spn=1

边递归边统计子问题的个数。
采用递推Fib(0)=0,Fib(1)=1,Fib(n)=Fib(n-1)+Fib(n-2)来求解子问题的值。

#include<cstdio>
using namespace std;
int fib[1005];
int spn[1005]={0};
int f(int x)
{
    spn[x]++;
    if(x==0)return 0;
    else if(x==1)return 1;
    else return f(x-1)+f(x-2);
}
int main()
{
    int n;
    scanf("%d",&n);
    fib[0]=0;
    fib[1]=1;
    int t=f(n);//先递归统计子问题的个数
    for(int i=2;i<=n;i++)fib[i]=fib[i-1]+fib[i-2];
    for(int i=0;i<=n;i++)
    {
        printf("Fib(%d)=%d,spn=%d",i,fib[i],spn[i]);
        if(i<n)printf("\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值