数值方法:多项式插值与最小二乘法估计
1. 数值方法的应用
数值方法在多个领域有着广泛的应用,以下是一些常见的应用场景:
- 线性回归模型 :用于描述自变量 $x$ 和因变量 $y$ 之间的线性关系。通过最小二乘估计器,可以预测未观察到的 $x$ 值对应的 $y$ 值。
- 曲线拟合 :将曲线拟合到多个点上。如果已知点位于要拟合的曲线上有意义的位置,并且有足够多的点,插值可以帮助绘制平滑曲线。
- 散点图 :用于确定自变量 $x$ 和因变量 $y$ 之间的关系。使用最小二乘估计器在散点图上绘制最佳拟合线有助于分析这种关系。
- 函数逼近 :确定函数在未知精确值的点上的值。可以通过构造适当次数的插值多项式来实现。
- 函数表 :包含计算成本高的函数或复杂物理现象模型的值。由于计算和存储所有值成本过高,通常只存储有限数量的点,并在这些点之间进行插值。
- 科学计算 :解方程是该领域最基本的问题之一。
2. 多项式插值
2.1 多项式插值的描述
许多问题可以用函数来描述,但通常函数是未知的,我们只能从少量已知点推断函数的信息。插值就是在这些已知点之间进行估计。例如,已知函数 $f(x)$ 上的点 $x_0, \cdots, x_8$,可以通过插值估计其他点 $z_0, z_1, z_2$ 的函数值。
2.2 多项式的基本形式
-
<